हिंदी

Hence Obtain the Expression for Acceleration, Velocity and Displacemetn of a Particle Performing Linear S.H.M. - Physics

Advertisements
Advertisements

प्रश्न

Hence obtain the expression for acceleration, velocity and displacement of a particle performing linear S.H.M.

संक्षेप में उत्तर

उत्तर

Hence obtain the expression for acceleration, velocity and displacement of a particle performing linear S.H.M.

The differential equation of linear SHM is `(d^2vecx)/(dt^2) + k/m vecx = 0` where m = mass of the particle performing SHM.

(d^2vecx)/(dt)^2  = acceleration of the particle when its displacement from the mean position is `vecx` and k =  force constant. For linear motion, we can write the differential equation in scalar form :

`(d^2x)/(dt^2) + k/m x = 0`

Let `k/m = omega^2` , a constant

`:. (d^2x)/(dt^2) + omega^2x = 0`

∴ Acceleration, a = `(d^2x)/(dt^2) = -omega^2x` ....(1).

The minus sign shows that the acceleration and the displacement have opposite directions. Writing
v = `(dx)/(dt)` as the velocity of the particle.

`a = (d^2x)/(dt^2) = (dv)/(dt) = (dv)/(dx)xx(dx)/(dt) = (dv)/(dx) = v = v (dv)/(dx)`

Hence, Eq. (1) can be written as

`v(dv)/(dx) = -omega^2x`

∴ `vdv = -omega^2x`

Integrating this expression, we get

`v^2/2 = (-omega^2x^2)/2 + C`

where the constant of integration C is found from a boundary condition.

At an extreme position (a turning point of the motion), the velocity of the particle is zero. Thus, v = 0 when x = ±A, where A is the amplitude.

`:. 0 = (-omega^2A^2)/2 + C` `:. C = (omega^2A^2)/2`

`:.v^2/2 = (-omega^2x^2)/2 + (omega^2A^2)/2`

`:. v^2 = omega^2(A^2 -x^2)`

`:.v = +- omegasqrt(A^2 - X^2)` ......(2)

This equation gives the velocity of the particle in terms of the displacement, x. The velocity towards right is taken to be positive and towards left as negative.

Since v = dx/dt we can write Eq. 2 as follows:

`(dx)/(dt) = omegasqrt(A^2 - x^2)`(considering only the plus sign)

`:. (dx)/(sqrt(A^2-x^2)) = omega dt`

Integrating the expression, we get,

`sin^(-1) (x/A) = omegat+x`  ....(3)

where the constant of integration, x , is found from the initial conditions, i.e., the displacement and the
velocioty of the particle at time t = 0.

From Eq (3), we have

`x/A= sin(omegat + x)`

∴ Displacement as a function of time is, x = Asin (ωt + x).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The average displacement over a period of S.H.M. is ______.

(A = amplitude of S.H.M.)


A particle executing simple harmonic motion comes to rest at the extreme positions. Is the resultant force on the particle zero at these positions according to Newton's first law?


Can the potential energy in a simple harmonic motion be negative? Will it be so if we choose zero potential energy at some point other than the mean position?


The energy of system in simple harmonic motion is given by \[E = \frac{1}{2}m \omega^2 A^2 .\] Which of the following two statements is more appropriate?
(A) The energy is increased because the amplitude is increased.
(B) The amplitude is increased because the energy is increased.


A block of known mass is suspended from a fixed support through a light spring. Can you find the time period of vertical oscillation only by measuring the extension of the spring when the block is in equilibrium?


The distance moved by a particle in simple harmonic motion in one time period is


The motion of a particle is given by x = A sin ωt + B cos ωt. The motion of the particle is


A pendulum clock keeping correct time is taken to high altitudes,


Which of the following quantities are always positive in a simple harmonic motion?


For a particle executing simple harmonic motion, the acceleration is proportional to


A particle moves in the X-Y plane according to the equation \[\overrightarrow{r} = \left( \overrightarrow{i} + 2 \overrightarrow{j} \right)A\cos\omega t .\] 

The motion of the particle is
(a) on a straight line
(b) on an ellipse
(c) periodic
(d) simple harmonic


An object is released from rest. The time it takes to fall through a distance h and the speed of the object as it falls through this distance are measured with a pendulum clock. The entire apparatus is taken on the moon and the experiment is repeated
(a) the measured times are same
(b) the measured speeds are same
(c) the actual times in the fall are equal
(d) the actual speeds are equal


A particle executes simple harmonic motion with an amplitude of 10 cm and time period 6 s. At t = 0 it is at position x = 5 cm going towards positive x-direction. Write the equation for the displacement x at time t. Find the magnitude of the acceleration of the particle at t = 4 s.


A small block oscillates back and forth on a smooth concave surface of radius R ib Figure . Find the time period of small oscillation.


A spherical ball of mass m and radius r rolls without slipping on a rough concave surface of large radius R. It makes small oscillations about the lowest point. Find the time period.


Assume that a tunnel is dug along a chord of the earth, at a perpendicular distance R/2 from the earth's centre where R is the radius of the earth. The wall of the tunnel is frictionless. (a) Find the gravitational force exerted by the earth on a particle of mass mplaced in the tunnel at a distance x from the centre of the tunnel. (b) Find the component of this force along the tunnel and perpendicular to the tunnel. (c) Find the normal force exerted by the wall on the particle. (d) Find the resultant force on the particle. (e) Show that the motion of the particle in the tunnel is simple harmonic and find the time period.


A closed circular wire hung on a nail in a wall undergoes small oscillations of amplitude 20 and time period 2 s. Find (a) the radius of the circular wire, (b) the speed of the particle farthest away from the point of suspension as it goes through its mean position, (c) the acceleration of this particle as it goes through its mean position and (d) the acceleration of this particle when it is at an extreme position. Take g = π2 m/s2.


A simple pendulum of length l is suspended from the ceiling of a car moving with a speed v on a circular horizontal road of radius r. (a) Find the tension in the string when it is at rest with respect to the car. (b) Find the time period of small oscillation.


A particle is subjected to two simple harmonic motions of same time period in the same direction. The amplitude of the first motion is 3.0 cm and that of the second is 4.0 cm. Find the resultant amplitude if the phase difference between the motions is (a) 0°, (b) 60°, (c) 90°.


Three simple harmonic motions of equal amplitude A and equal time periods in the same direction combine. The phase of the second motion is 60° ahead of the first and the phase of the third motion is 60° ahead of the second. Find the amplitude of the resultant motion.


The length of a second’s pendulum on the surface of the Earth is 0.9 m. The length of the same pendulum on the surface of planet X such that the acceleration of the planet X is n times greater than the Earth is


If the inertial mass and gravitational mass of the simple pendulum of length l are not equal, then the time period of the simple pendulum is


Define the frequency of simple harmonic motion.


A simple harmonic motion is given by, x = 2.4 sin ( 4πt). If distances are expressed in cm and time in seconds, the amplitude and frequency of S.H.M. are respectively, 


A spring is stretched by 5 cm by a force of 10 N. The time period of the oscillations when a mass of 2 kg is suspended by it is ______


The displacement of a particle is represented by the equation `y = 3 cos (pi/4 - 2ωt)`. The motion of the particle is ______.


The displacement of a particle is represented by the equation y = sin3ωt. The motion is ______.


Motion of a ball bearing inside a smooth curved bowl, when released from a point slightly above the lower point is ______.

  1. simple harmonic motion.
  2. non-periodic motion.
  3. periodic motion.
  4. periodic but not S.H.M.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×