हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Block of Known Mass is Suspended from a Fixed Support Through a Light Spring. Can You Find the Time Period of Vertical Oscillation - Physics

Advertisements
Advertisements

प्रश्न

A block of known mass is suspended from a fixed support through a light spring. Can you find the time period of vertical oscillation only by measuring the extension of the spring when the block is in equilibrium?

टिप्पणी लिखिए

उत्तर

Yes.

Time period of a spring mass system is given by,\[T = 2\pi\sqrt{\frac{m}{k}}\]  ...(1)    where m is mass of the block, and
           k  is the spring constant
Time period is also given by the relation,

\[T = 2\pi\sqrt{\frac{x_0}{g}}\]    ...(2)

where, x0 is extension of the spring, and
            is acceleration due to gravity

From the equations (1) and (2), we have :

\[mg = k x_0\]

\[\Rightarrow k = \frac{mg}{x_0}\]

Substituting the value of k in the above equation, we get:

\[T = 2\pi\sqrt{\frac{m}{\frac{mg}{x_0}}} = 2\pi\sqrt{\frac{x_0}{g}}\]

Thus, we can find the time period if the value of extension x0 is known.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Simple Harmonics Motion - Short Answers [पृष्ठ २५०]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 12 Simple Harmonics Motion
Short Answers | Q 14 | पृष्ठ २५०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A particle in S.H.M. has a period of 2 seconds and amplitude of 10 cm. Calculate the acceleration when it is at 4 cm from its positive extreme position.


A particle executes S.H.M. with a period of 10 seconds. Find the time in which its potential energy will be half of its total energy.


Hence obtain the expression for acceleration, velocity and displacement of a particle performing linear S.H.M.


Which of the following quantities are always negative in a simple harmonic motion?

(a) \[\vec{F} . \vec{a} .\]

(b) \[\vec{v} . \vec{r} .\]

(c) \[\vec{a} . \vec{r} .\]

(d)\[\vec{F} . \vec{r} .\]


All the surfaces shown in figure are frictionless. The mass of the care is M, that of the block is m and the spring has spring constant k. Initially the car and the block are at rest and the spring is stretched through a length x0 when the system is released. (a) Find the amplitudes of the simple harmonic motion of the block and of the care as seen from the road. (b) Find the time period(s) of the two simple harmonic motions.


A pendulum having time period equal to two seconds is called a seconds pendulum. Those used in pendulum clocks are of this type. Find the length of a second pendulum at a place where = π2 m/s2.


A pendulum clock giving correct time at a place where g = 9.800 m/s2 is taken to another place where it loses 24 seconds during 24 hours. Find the value of g at this new place.


Assume that a tunnel is dug across the earth (radius = R) passing through its centre. Find the time a particle takes to cover the length of the tunnel if (a) it is projected into the tunnel with a speed of \[\sqrt{gR}\] (b) it is released from a height R above the tunnel (c) it is thrown vertically upward along the length of tunnel with a speed of \[\sqrt{gR}\]


A simple pendulum of length l is suspended through the ceiling of an elevator. Find the time period of small oscillations if the elevator (a) is going up with and acceleration a0(b) is going down with an acceleration a0 and (c) is moving with a uniform velocity.


A simple pendulum fixed in a car has a time period of 4 seconds when the car is moving uniformly on a horizontal road. When the accelerator is pressed, the time period changes to 3.99 seconds. Making an approximate analysis, find the acceleration of the car.


A closed circular wire hung on a nail in a wall undergoes small oscillations of amplitude 20 and time period 2 s. Find (a) the radius of the circular wire, (b) the speed of the particle farthest away from the point of suspension as it goes through its mean position, (c) the acceleration of this particle as it goes through its mean position and (d) the acceleration of this particle when it is at an extreme position. Take g = π2 m/s2.


A particle is subjected to two simple harmonic motions given by x1 = 2.0 sin (100π t) and x2 = 2.0 sin (120 π t + π/3), where x is in centimeter and t in second. Find the displacement of the particle at (a) = 0.0125, (b) t = 0.025.


The length of a second’s pendulum on the surface of the Earth is 0.9 m. The length of the same pendulum on the surface of planet X such that the acceleration of the planet X is n times greater than the Earth is


A simple pendulum is suspended from the roof of a school bus which moves in a horizontal direction with an acceleration a, then the time period is


Define the time period of simple harmonic motion.


Consider a simple pendulum of length l = 0.9 m which is properly placed on a trolley rolling down on a inclined plane which is at θ = 45° with the horizontal. Assuming that the inclined plane is frictionless, calculate the time period of oscillation of the simple pendulum.


Consider two simple harmonic motion along the x and y-axis having the same frequencies but different amplitudes as x = A sin (ωt + φ) (along x-axis) and y = B sin ωt (along y-axis). Then show that

`"x"^2/"A"^2 + "y"^2/"B"^2 - (2"xy")/"AB" cos φ = sin^2 φ`

and also discuss the special cases when

  1. φ = 0
  2. φ = π
  3. φ = `π/2`
  4. φ = `π/2` and A = B
  5. φ = `π/4`

Note: when a particle is subjected to two simple harmonic motions at right angle to each other the particle may move along different paths. Such paths are called Lissajous figures.


A spring is stretched by 5 cm by a force of 10 N. The time period of the oscillations when a mass of 2 kg is suspended by it is ______


What is the ratio of maxmimum acceleration to the maximum velocity of a simple harmonic oscillator?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×