हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

The Net Charge in a Current-carrying Wire is Zero. Then, Why Does a Magnetic Field Exert a Force on It? - Physics

Advertisements
Advertisements

प्रश्न

The net charge in a current-carrying wire is zero. Then, why does a magnetic field exert a force on it?

टिप्पणी लिखिए

उत्तर

The net charge in a current- carrying wire is zero. Yet, negative charge, i.e. electrons are moving in the wire towards the positive terminal. It is this motion of electrons in the conductor which produces the current in the wire and is also responsible for the magnetic force acting on the wire.

F = qVBsin(θ), where F is the force, q is the charge of electrons, is the velocity of electrons and B is the magnetic field.

Moreover, the positive charges on the wire are due to nucleus containing proton. As they are not moving so there is no force on them, so the force is only due to the moving electrons in the wire.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Magnetic Field - Short Answers [पृष्ठ २२९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 12 Magnetic Field
Short Answers | Q 8 | पृष्ठ २२९

संबंधित प्रश्न

Two long, straight, parallel conductors carry steady currents, I1 and I2, separated by a distance d. If the currents are flowing in the same direction, show how the magnetic field set up in one produces an attractive force on the other? Obtain the expression for this force. Hence, define one ampere.


A horizontal overhead power line carries a current of 90 A in east to west direction. What is the magnitude and direction of the magnetic field due to the current 1.5 m below the line?


A circular coil carrying a current I has radius R and number of turns N. If all the three, i.e. the current
I, radius R and number of turns N are doubled, then, the magnetic field at its centre becomes:

(a) Double

(b) Half

(c) Four times

(d) One fourth


A charge ‘q’ moving along the X- axis with a velocity  `vecv` is subjected to a uniform magnetic field B along the Z-axis as it crosses the origin O.

(i) Trace its trajectory.

(ii) Does the charge gain kinetic energy as it enters the magnetic field? Justify your answer.


A straight horizontal wire of mass 10 mg and length 1.0 m carries a current of 2.0 A. What minimum magnetic field B should be applied in the region, so that the magnetic force on the wire may balance its weight?


A particle with charge q moves with a velocity v in a direction perpendicular to the directions of uniform electric and magnetic fields, E and B respectively, which are mutually perpendicular to each other. Which one of the following gives the condition for which the particle moves undeflected in its original trajectory?


A proton enters into a magnetic field of induction 1.732 T, with a velocity of 107 m/s at an angle 60° to the field. The force acting on the proton is e = 1.6 × 10-19 C, sin 60° = cos 30° = `sqrt3/2`


The magnetic moment is NOT associated with ____________.


For a circular coil of radius R and N turns carrying current I, the magnitude of the magnetic field at a point on its axis at a distance x from its centre is given by,

B = `(μ_0"IR"^2"N")/(2("x"^2 + "R"^2)^(3/2))`

(a) Show that this reduces to the familiar result for field at the centre of the coil.

(b) Consider two parallel co-axial circular coils of equal radius R, and number of turns N, carrying equal currents in the same direction, and separated by a distance R. Show that the field on the axis around the mid-point between the coils is uniform over a distance that is small as compared to R, and is given by, B = `0.72 (μ_0"NI")/"R"` approximately.

[Such an arrangement to produce a nearly uniform magnetic field over a small region is known as Helmholtz coils.]


A charged particle enters an environment of a strong and non-uniform magnetic field varying from point to point both in magnitude and direction, and comes out of it following a complicated trajectory. Would its final speed equal the initial speed if it suffered no collisions with the environment?


An electron emitted by a heated cathode and accelerated through a potential difference of 2.0 kV, enters a region with uniform magnetic field of 0.15 T. Determine the trajectory of the electron if the field (a) is transverse to its initial velocity, (b) makes an angle of 30° with the initial velocity.


Consider a moving charged particle in a region of magnetic field. Which of the following statements are correct?
  1. If v is parallel to B, then path of particle is spiral.
  2. If v is perpendicular to B, then path of particle is a circle.
  3. If v has a component along B, then path of particle is helical.
  4. If v is along B, then path of particle is a circle.

A magnetic field exerts no force on


Consider a wire carrying a steady current, I placed in a uniform magnetic field B perpendicular to its length. Consider the charges inside the wire. It is known that magnetic forces do no work. This implies that ______.

  1. motion of charges inside the conductor is unaffected by B since they do not absorb energy.
  2. some charges inside the wire move to the surface as a result of B.
  3. if the wire moves under the influence of B, no work is done by the force.
  4. if the wire moves under the influence of B, no work is done by the magnetic force on the ions, assumed fixed within the wire.

Show that a force that does no work must be a velocity dependent force.


The magnetic force depends on v which depends on the inertial frame of reference. Does then the magnetic force differ from inertial frame to frame? Is it reasonable that the net acceleration has a different value in different frames of reference?


The unit Wbm-2 is equal to ______.


A unit vector is represented as `(0.8hat"i" + "b"hat"j" + 0.4hat"k")`. Hence the value of 'b' must be ______.


Two long parallel current-carrying conductors are 0.4 m apart in air and carry currents 5 A and 10 A. Calculate the force per metre on each conductor, if the currents are (a) in the same direction and (b) in the opposite direction.


Lorentz force in vector form is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×