हिंदी

A Circular Coil Carrying a Current I Has Radius R and Number of Turns N. If All the Three, I.E. the Current I, Radius R and Number of Turns N Are Doubled, Then, the Magnetic Field at Its Centre Becomes - Physics (Theory)

Advertisements
Advertisements

प्रश्न

A circular coil carrying a current I has radius R and number of turns N. If all the three, i.e. the current
I, radius R and number of turns N are doubled, then, the magnetic field at its centre becomes:

(a) Double

(b) Half

(c) Four times

(d) One fourth

उत्तर

Double

`B = (mu_0NI)/R`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March) Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Seema’s uncle was advised by his doctor to have an MRI (Magnetic Resonance Imaging) scan of his brain. Her uncle felt it to be expensive and wanted to postpone it. When Seema learnt about this, she took the help of her family and also approached the doctor, who also offered a substantial discount. She then convinced her uncle to undergo the test to enable the doctor to know the condition of his brain. The information thus obtained greatly helped the doctor to treat him properly.

Based on the above paragraph, answer the following questions:

(a) What according to you are the values displayed by Seema, her family and the doctor?

(b) What could be the possible reason for MRI test to be so expensive?

(c) Assuming that MRI test was performed using a magnetic field of 0.1 T, find the minimum and maximum values of the force that the magnetic field could exert on a proton (charge = 1.6 x 10-19 C) moving with a speed of 104 m/s.


Deduce the expression for the magnetic field at a point on the axis of a current carrying circular loop of radius ‘R’ distant ‘x’ from the centre. Hence, write the magnetic field at the centre of a loop.


A long straight wire in the horizontal plane carries a current of 50 A in north to south direction. Give the magnitude and direction of B at a point 2.5 m east of the wire.


Explain the term hysteresis


A charge ‘q’ moving along the X- axis with a velocity  `vecv` is subjected to a uniform magnetic field B along the Z-axis as it crosses the origin O.

(i) Trace its trajectory.

(ii) Does the charge gain kinetic energy as it enters the magnetic field? Justify your answer.


PQ is a long straight conductor carrying a current of 3A as shown in Figure below. An electron moves with a velocity of 2 x 107 ms-1 parallel to it. Find the force acting on the electron.


State whether the following statement is true or false:
Magnetic poles exist in pairs.


According to the right-hand rule, the direction of magnetic induction if the current is directed in an anticlockwise direction is ______   


A conductor has three segments; two straights of length L and a semicircular with radius R. It carries a current I What is the magnetic field B at point P?


A proton enters into a magnetic field of induction 1.732 T, with a velocity of 107 m/s at an angle 60° to the field. The force acting on the proton is e = 1.6 × 10-19 C, sin 60° = cos 30° = `sqrt3/2`


A very high magnetic field is applied to a stationary charge. Then the charge experiences ______.


Direction of magnetic force on a positive charge moving in a magnetic field is given by ______.


Lorentz Force generally refers to ______.


Direction of force due to magnetic field on a moving charged particle is ______.
  1. perpendicular to direction of velocity of charged particle.
  2. perpendicular to direction of magnetic field.
  3. parallel to direction of velocity of charged particle.
  4. parallel to the direction of magnetic field.
Correct statements are-

Two long current-carrying conductors are placed parallel to each other at a distance of 8 cm between them. The magnitude of the magnetic field produced at the mid-point between the two conductors due to the current flowing in them is 300µT. The equal current flowing in the two conductors is ______.


Two conducting rails are connected to a source of emf and form an incline as shown in figure. A bar of mass 50 g slides without friction down the incline through a vertical magnetic field B. If the length of the bar is 50 cm and a current of 2.5 A is provided by battery. Value of B for which the bar slide at a constant velocity ______ × 10-1 Tesla. 2 [g = 10 m/s2]


Write the expression for the Lorentz force on a particle of charge q moving with a velocity `vecv` in a magnetic field `vecB`. When is the magnitude of this force maximum? Show that no work is done by this force on the particle during its motion from point `vecr_1` to point `vecr_2`.


A long straight wire AB carries a current I. A particle (mass m and charge q) moves with a velocity `vec"v"`, parallel to the wire, at a distance d from it as shown in the figure. Obtain the expression for the force experienced by the particle and mention its directions.

 


A long straight conductor kept along X' X axis, carries a steady current I along the +x direction. At an instant t, a particle of mass m and charge q at point (x, y) moves with a velocity `vecv` along +y direction. Find the magnitude and direction of the force on the particle due to the conductor. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×