Advertisements
Advertisements
प्रश्न
The time T, taken for a complete oscillation of a single pendulum with length l, is given by the equation T = `2pi sqrt(l/g)` where g is a constant. Find the approximate percentage error in the calculated value of T corresponding to an error of 2 percent in the value of l
उत्तर
Given T = `2pi sqrt(l/g)`
On taking log both sides, we get
log T = `log 2 + log pi + 1/2 log "l" - 1/2 log "g"`
On differentiating both sides w. r. to l, we get
`1/"T" "dT"/"dl" = 1/21`
`1/"T" "dT"/"dl" Deltal = 1/(2l) Deltal` ......(Multiplying both sides `Deltal`)
∴ `Delta"T" = "dT"/"dl" Deltal`
`1/"T" Delta"T" = 1/(2l) Deltal`
`(Delta"T")/"T" xx 100 = 1/2 (Deltal)/l xx 100`
= `1/2 xx 2`
= 1%
So, the percentage error in T is 1%
APPEARS IN
संबंधित प्रश्न
Find a linear approximation for the following functions at the indicated points.
f(x) = x3 – 5x + 12, x0 = 2
A sphere is made of ice having radius 10 cm. Its radius decreases from 10 cm to 9.8 cm. Find approximations for the following:
Change in the surface area
Find the differential dy for the following functions:
y = `(1 - 2x)^3/(3 - 4x)`
Find the differential dy for the following functions:
y = `"e"^(x^2 - 5x + 7) cos(x^2 - 1)`
Find df for f(x) = x2 + 3x and evaluate it for x = 2 and dx = 0.1
Find df for f(x) = x2 + 3x and evaluate it for x = 3 and dx = 0.02
Assuming log10 e = 0.4343, find an approximate value of Iog10 1003
The trunk of a tree has a diameter of 30 cm. During the following year, the circumference grew 6 cm. What is the percentage increase in the area of the cross-section of the tree?
An egg of a particular bird is very nearly spherical. If the radius to the inside of the shell is 5 mm and the radius to the outside of the shell is 5.3 mm, find the volume of the shell approximately
In a newly developed city, it is estimated that the voting population (in thousands) will increase according to V(t) = 30 + 12t2 – t3, 0 ≤ t ≤ 8 where t is the time in years. Find the approximate change in voters for the time change from 4 to `4 1/6` years
The relation between the number of words y a person learns in x hours is given by y = `sqrt(x), 0 ≤ x ≤ 9`. What is the approximate number of words learned when x changes from 4 to 4.1 hours?
A coat of paint of thickness 0.2 cm is applied to the faces of cube whose edge is 10 cm. Use the differentials to find approximately how many cubic centimeters of paint is used to paint this cube. Also calculate the exact amount of paint used to paint this cube
Choose the correct alternative:
If u(x, y) = `"e"^(x^2 + y^2)`, then `(delu)/(delx)` is equal to
Choose the correct alternative:
If we measure the side of a cube to be 4 cm with an error of 0.1 cm, then the error in our calculation of the volume is
Choose the correct alternative:
The change in the surface area S = 6x2 of a cube when the edge length varies from x0 to x0 + dx is
Choose the correct alternative:
If f(x) = `x/(x + 1)`, then its differential is given by
Choose the correct alternative:
Linear approximation for g(x) = cos x at x = `pi/2` is