हिंदी

Two circle with centres A and B, and radii 5 cm and 3 cm, touch each other internally. If the perpendicular bisector of the segment AB meets the bigger circle in P and Q; find the length of PQ. - Mathematics

Advertisements
Advertisements

प्रश्न

Two circle with centres A and B, and radii 5 cm and 3 cm, touch each other internally. If the perpendicular bisector of the segment AB meets the bigger circle in P and Q; find the length of PQ.

योग

उत्तर


If two circles touch internally, then distance between their centres is equal to the difference of their radii.

So, AB = (5 − 3) cm = 2 cm.

Also, the common chord PQ is the perpendicular bisector of AB.

Therefore, AC = CB = `1/2` AB = 1 cm

In right ΔACP, we have AP2 = AC2 + CP2

`=>` 52 = 12 + CP2

`=>` CP2 = 25 – 1 = 24

`=> CP = sqrt(24)= 2 sqrt(6)  cm`

Now, PQ = 2 CP 

= `2 xx 2sqrt(6)  cm`

= `4sqrt(6)  cm`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Tangents and Intersecting Chords - Exercise 18 (C) [पृष्ठ २८५]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 18 Tangents and Intersecting Chords
Exercise 18 (C) | Q 3 | पृष्ठ २८५

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×