Advertisements
Advertisements
प्रश्न
From a point P outside a circle, with centre O, tangents PA and PB are drawn. Prove that:
OP is the ⊥ bisector of chord AB.
उत्तर
In ΔOAM and ΔOBM
OA = OB ...(Radii of the same circle)
∠AOM = ∠BOM ...(Proved ∠AOP = ∠BOP)
OM = OM ...(Common)
∴ By Side – Angle – Side criterion of congruence,
ΔOAM ≅ ΔOBM
The corresponding parts of the congruent triangles are congruent.
`=>` AM = MB
And ∠OMA = ∠OMB
But, ∠OMA + ∠OMB = 180°
∴ ∠OMA = ∠OMB = 90°
Hence, OM or OP is the perpendicular bisector of chord AB.
APPEARS IN
संबंधित प्रश्न
A chord of length 24 cm is at a distance of 5 cm from the centre of the circle. Find the length of the chord of the same circle which is at a distance of 12 cm from the centre.
In the given figure, AC is a diameter of a circle, whose centre is O. A circle is described on AO as diameter. AE, a chord of the larger circle, intersects the smaller circle at B. Prove that : AB = BE.
In the given figure, M is the centre of the circle. Chords AB and CD are perpendicular to each other. If ∠MAD = x and ∠BAC = y :
- express ∠AMD in terms of x.
- express ∠ABD in terms of y.
- prove that : x = y.
In the following figure, a circle is inscribed in the quadrilateral ABCD.
If BC = 38 cm, QB = 27 cm, DC = 25 cm and that AD is perpendicular to DC, find the radius of the circle.
PQ and QR are two equal chords of a circle. A diameter of the circle is drawn through Q . Prove that the diameter bisects ∠ PQR.
Two chords of lengths 10cm and 24cm are drawn parallel o each other in a circle. If they are on the same side of the centre and the distance between them is 17cm, find the radius of the circle.
In the following figure, AD is a straight line, OP ⊥ AD and O is the centre of both circles. If OA = 34cm, OB = 20 cm and OP = 16 cm;
find the length of AB.
The figure shows two concentric circles and AD is a chord of a larger circle.
Prove that: AB = CD.
M and N are the mid-points of two equal chords AB and CD respectively of a circle with center O.
Prove that: (i) ∠BMN = ∠DNM
(ii) ∠AMN = ∠CNM
The radius of a circle is 13 cm and the length of one of its chord is 10 cm. Find the distance of the chord from the centre.