Advertisements
Advertisements
प्रश्न
Vijay had some bananas, and he divided them into two lots A and B. He sold the first lot at the rate of Rs 2 for 3 bananas and the second lot at the rate of Re 1 per banana, and got a total of Rs 400. If he had sold the first lot at the rate of Re 1 per banana, and the second lot at the rate of Rs 4 for 5 bananas, his total collection would have been Rs 460. Find the total number of bananas he had.
उत्तर
Let the number of bananas in lots A and B be x and y respectively
Case I: Cost of the first lot at the rate of ₹ 2 for 3 bananas + Cost of the second lot at the rate of ₹ 1 per banana = ₹ 400
⇒ `2/3x + y` = 400
⇒ `2x + 3y` = 1200 ......(i)
Case II: Cost of the first lot at the rate ₹ 1 per banana + Cost of the second lot at the rate of ₹ 4 for 5 bananas = Amount received
⇒ `x + 4/5y` = 460
⇒ 5x + 4y = 2300 ......(ii)
On multiplying in equation (i) by 4 and equation (ii) by 3 and then subtracting them, we get
(8x + 12y) – (15x + 12y) = 4800 – 6900
⇒ – 7x = – 2100
⇒ x = 300
Now, put the value of x in equation (i), we get
2 × 300 + 3y = 1200
⇒ 600 + 3y = 1200
⇒ 3y = 1200 – 600
⇒ 3y = 600
⇒ y = 200
∴ Total number of bananas = Number of bananas in lot A + Number of bananas in lot B
= x + y
= 300 + 200
= 500
Hence, he had 500 bananas.
APPEARS IN
संबंधित प्रश्न
Solve the following system of equations in x and y by cross-multiplication method
`(a – b) x + (a + b) y = a^2 – 2ab – b^2`
`(a + b) (x + y) = a^2 + b^2`
Form the pair of linear equations in the following problems and find their solutions (if they exist) by any algebraic met
Places A and B are 100 km apart on a highway. One car starts from A and another from B at the same time. If the cars travel in the same direction at different speeds, they meet in 5 hours. If they travel towards each other, they meet in 1 hour. What are the speeds of the two cars?
Solve the following systems of equations:
0.5x + 0.7y = 0.74
0.3x + 0.5y = 0.5
Solve the following systems of equations:
`(7x - 2y)/"xy" = 5`
`(8x + 7y)/"xy" = 15`
Solve each of the following systems of equations by the method of cross-multiplication
`x/a = y/b`
`ax + by = a^2 + b^2`
Solve each of the following systems of equations by the method of cross-multiplication
`a^2x + b^2y = c^2`
`b^2x + a^2y = d^2`
Solve the system of equations by using the method of cross multiplication:
3x - 2y + 3 = 0,
4x + 3y – 47 = 0
Solve the system of equations by using the method of cross multiplication:
2ax + 3by – (a + 2b) = 0,
3ax + 2by – (2a + b) = 0
Solve the following pair of equations:
`(2xy)/(x + y) = 3/2, (xy)/(2x - y) = (-3)/10, x + y ≠ 0, 2x - y ≠ 0`
Anuj had some chocolates, and he divided them into two lots A and B. He sold the first lot at the rate of ₹ 2 for 3 chocolates and the second lot at the rate of ₹ 1 per chocolate, and got a total of ₹ 400. If he had sold the first lot at the rate of ₹ 1 per chocolate, and the second lot at the rate of ₹4 for 5 chocolates, his total collection would have been ₹460. Find the total number of chocolates he had.