Advertisements
Advertisements
प्रश्न
Solve each of the following systems of equations by the method of cross-multiplication
`a^2x + b^2y = c^2`
`b^2x + a^2y = d^2`
उत्तर
The given system of equations may be written as
`a^2x + b^2y - c^2 = 0`
`b^2x + a^2y - d^2 = 0`
Here,
`a_1 = a^2, b_1 = b^2, c_1 = -c^2`
`a_2 = b^2, b_2 = a^2, c_2 = -d^2`
By cross multiplication, we have
`=> x/(-b^2d^2 + a^2c^2) = (-y)/(-a^2d^2 + b^2c^2) = 1/(a^4 - b^4)`
Now
`x/(-b^2d^2 + a^2c^2) = 1/(a^4 - b^4)`
`=> x = (a^2c^2 - b^2d^2)/(a^4 - b^4)`
And
`(-y)/(-a^2d^2 + b^2c^2) = 1/(a^4 - b^4)`
`=> -y = (-a^2d^2 + b^2c^2)/(a^4 - b^4)`
`=> y = (a^2d^2 - b^2c^2)/(a^4 - b^4)`
Hence `x = (a^2c^2 - b^2d^2)/(a^4 - b^4), y = (a^2d^2 - b^2c^2)/(a^4-b^4)` is the solution of the given system of the equations.
APPEARS IN
संबंधित प्रश्न
Solve the following system of equations by cross-multiplications method.
`a(x + y) + b (x – y) = a^2 – ab + b^2`
`a(x + y) – b (x – y) = a^2 + ab + b^2`
Solve the following system of equations by the method of cross-multiplication. `\frac{a}{x}-\frac{b}{y}=0;\text{}\frac{ab^{2}}{x}+\frac{a^{2}b}{y}=a^{2}+b^{2};` Where x ≠ 0, y ≠ 0
Which of the following pairs of linear equations has unique solution, no solution, or infinitely many solutions. In case there is a unique solution, find it by using cross multiplication method
3x – 5y = 20
6x – 10y = 40
Solve the following systems of equations:
`x/3 + y/4 =11`
`(5x)/6 - y/3 = -7`
Solve each of the following systems of equations by the method of cross-multiplication
5ax + 6by = 28
3ax + 4by = 18
Solve the system of equations by using the method of cross multiplication:
x + 2y + 1 = 0,
2x – 3y – 12 = 0.
Solve the system of equations by using the method of cross multiplication:
2ax + 3by – (a + 2b) = 0,
3ax + 2by – (2a + b) = 0
Solve the following pair of equations:
`4x + 6/y = 15, 6x - 8/y = 14, y ≠ 0`
Solve the following pair of equations:
`x/a + y/b = a + b, x/a^2 + y/b^2 = 2, a, b ≠ 0`
Solve the following pair of equations:
`(2xy)/(x + y) = 3/2, (xy)/(2x - y) = (-3)/10, x + y ≠ 0, 2x - y ≠ 0`