हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

What Are the Forms of Energy into Which the Electrical Energy of the Atmosphere is Dissipated During a Lightning? - Physics

Advertisements
Advertisements

प्रश्न

What are the forms of energy into which the electrical energy of the atmosphere is dissipated during a lightning?
(Hint: The earth has an electric field of about 100 Vm−1 at its surface in the downward direction, corresponding to a surface charge density = −10−9 C m−2. Due to the slight conductivity of the atmosphere up to about 50 km (beyond which it is good conductor), about + 1800 C is pumped every second into the earth as a whole. The earth, however, does not get discharged since thunderstorms and lightning occurring continually all over the globe pump an equal amount of negative charge on the earth.)

टिप्पणी लिखिए

उत्तर

During lightning and thunderstorm, light energy, heat energy, and sound energy are dissipated in the atmosphere.

shaalaa.com
Equipotential Surfaces
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Electrostatic Potential and Capacitance - Exercise [पृष्ठ ९२]

APPEARS IN

एनसीईआरटी Physics [English] Class 12
अध्याय 2 Electrostatic Potential and Capacitance
Exercise | Q 2.36 (d) | पृष्ठ ९२
एनसीईआरटी Physics [English] Class 12
अध्याय 2 Electrostatic Potential and Capacitance
Exercise | Q 37.4 | पृष्ठ ९२

संबंधित प्रश्न

Draw a sketch of equipotential surfaces due to a single charge (-q), depicting the electric field lines due to the charge


Two charges 2 μC and −2 µC are placed at points A and B 6 cm apart.

  1. Identify an equipotential surface of the system.
  2. What is the direction of the electric field at every point on this surface?

The discharging current in the atmosphere due to the small conductivity of air is known to be 1800 A on an average over the globe. Why then does the atmosphere not discharge itself completely in due course and become electrically neutral? In other words, what keeps the atmosphere charged?


Draw equipotential surfaces:

(1) in the case of a single point charge and

(2) in a constant electric field in Z-direction. Why are the equipotential surfaces about a single charge not equidistant?

(3) Can electric field exist tangential to an equipotential surface? Give reason


What is the geometrical shape of equipotential surfaces due to a single isolated charge?


Draw the equipotential surfaces due to an electric dipole. Locate the points where the potential due to the dipole is zero.


Why is there no work done in moving a charge from one point to another on an equipotential surface?


Depict the equipotential surfaces for a system of two identical positive point charges placed a distance(d) apart?


Define equipotential surface. 


Answer the following question.
Two identical point charges, q each, are kept 2m apart in the air. A third point charge Q of unknown magnitude and sign is placed on the line joining the charges such that the system remains in equilibrium. Find the position and nature of Q.


Answer the following question.
Write two important characteristics of equipotential surfaces.


Find the amount of work done in rotating an electric dipole of dipole moment 3.2 x 10- 8Cm from its position of stable equilibrium to the position of unstable equilibrium in a uniform electric field if intensity 104 N/C.  


A particle of mass 'm' having charge 'q' is held at rest in uniform electric field of intensity 'E'. When it is released, the kinetic energy attained by it after covering a distance 'y' will be ______.


An equipotential surface is that surface ______.

Equipotential surfaces ______.


Which of the following is NOT the property of equipotential surface?


The work done to move a charge along an equipotential from A to B ______.

  1. cannot be defined as `- int_A^B E.dl`
  2. must be defined as `- int_A^B E.dl`
  3. is zero.
  4. can have a non-zero value.

Draw equipotential surfaces for (i) an electric dipole and (ii) two identical positive charges placed near each other.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×