Advertisements
Advertisements
प्रश्न
Why can we not determine the order of a reaction by taking into consideration the balanced chemical equation?
उत्तर
Balanced chemical equation often leads to incorrect order or rate law. For example the following reaction seems to be a tenth order reaction.
\[\ce{KClO3 + 6FeSO4 + 3H2SO4 -> KCl + 3H2O + 3Fe2 (SO4)3}\]
This is actually a second order reaction. Actually the reaction is complex and occurs in several steps. The order of such reaction is determined by the slowest step in the reaction mechanism. Order is determined experimentally and is confined to the dependence of observed rate of reaction on the concentration of reactants.
APPEARS IN
संबंधित प्रश्न
For a reaction A + B ⟶ P, the rate is given by
Rate = k [A] [B]2
What is the overall order of reaction if A is present in large excess?
Define the following terms:
Half-life period of reaction (t1/2).
Rate of reaction for the combustion of propane is equal to:
\[\ce{C3H8_{(g)} + 5O2_{(g)} -> 3CO2_{(g)} + 4H2O_{(g)}}\]
Which of the following statement is true for order of a reaction?
Why does the rate of any reaction generally decreases during the course of the reaction?
Assertion: Order of the reaction can be zero or fractional.
Reason: We cannot determine order from balanced chemical equation.
Assertion: The enthalpy of reaction remains constant in the presence of a catalyst.
Reason: A catalyst participating in the reaction, forms different activated complex and lowers down the activation energy but the difference in energy of reactant and product remains the same.
If the 0.05 molar solution of m+ is replaced by a 0.0025 molar m+ solution, then the magnitude of the cell potential would be
The following data was obtained for chemical reaction given below at 975 K.
\[\ce{2NO(g) + 2H2(g) -> N2(g) + 2H2O(g)}\]
[NO] | [H2] | Rate | |
Mol L-1 | Mol L-1 | Mol L-1 s-1 | |
(1) | 8 × 10-5 | 8 × 10-5 | 7 × 10-9 |
(2) | 24 × 10-5 | 8 × 10-5 | 2.1 × 10-8 |
(3) | 24 × 10-5 | 32 × 10-5 | 8.4 × 10-8 |
The order of the reaction with respect to NO is ______. (Integer answer)
For a chemical reaction starting with some initial concentration of reactant At as a function of time (t) is given by the equation,
`1/("A"_"t"^4) = 2 + 1.5 xx 10^-3` t
The rate of disappearance of [A] is ____ × 10-2 M/sec when [A] = 2 M.
[Given: [At] in M and t in sec.]
[Express your answer in terms of 10-2 M /s]
[Round off your answer if required]