हिंदी

Write the expression for the force F acting on a particle of mass m and charge q moving with velocity V in a magnetic field B , Under what conditions will it move in (i) a circular path and (ii) a helical path? - Physics

Advertisements
Advertisements

प्रश्न

Write the expression for the force `vecF` acting on a particle of mass m and charge q moving with velocity `vecV` in a magnetic field `vecB` , Under what conditions will it move in (i) a circular path and (ii) a helical path?

उत्तर

When a charged particle having charge q moves inside a magnetic field `vecB` with velocity `vecV`, it experiences a force
`vecF =q(vecV ×vecB )`
When `vecV` is perpendicular to `vecB` 
The force `vecF` on the charged particle acts as the centripetal force and makes it move along a circular path.
The point charge travels in the plane perpendicular to both `vecV` and `vecB`.

When the component of velocity of the charge particle is parallel to the direction of the force of the electric field, then the force experienced due to that component will be zero, because
F=qvBsin0°=0, and particle will move in a straight line. Also, the force experienced by the component perpendicular to `vecB` moves the particle in a circular path. The combined effect of both the components will move the particle in a helical path.

shaalaa.com
Force on a Moving Charge in Uniform Magnetic and Electric Fields
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) Delhi Set 3

संबंधित प्रश्न

A proton and an α-particle move perpendicular to a magnetic field. Find the ratio of radii of circular paths described by them when both have (i) equal velocities, and (ii) equal kinetic energy. 


A flexible wire of irregular shape, abcd, as shown in the figure, turns into a circular shape when placed in a region of magnetic field which is directed normal to the plane of the loop away from the reader. Predict the direction of the induced current in the wire.


Write the expression for the force,`vecF` acting on a charged particle of charge ‘q’, moving with a velocity `vecV` in the presence of both electric field `vecF`and magnetic field `vecB` . Obtain the condition under which the particle moves undeflected through the fields.


A charged particle moves in a gravity-free space without change in velocity. Which of the following is/are possible?
(a) E = 0, B = 0
(b) E = 0, B ≠ 0
(c) E ≠ 0, B = 0
(d) E ≠ 0, B ≠ 0


A 10 g bullet with a charge of 4.00 μC is fired at a speed of 270 m s−1 in a horizontal direction. A vertical magnetic field of 500 µT exists in the space. Find the deflection of the bullet due to the magnetic field as it travels through 100 m. Make appropriate approximations.


A current of 2 A enters at the corner d of a square frame abcd of side 20 cm and leaves at the opposite corner b. A magnetic field B = 0.1 T exists in the space in a direction perpendicular to the plane of the frame, as shown in the figure. Find the magnitude and direction of the magnetic forces on the four sides of the frame.


A particle of mass m and positive charge q, moving with a uniform velocity v, enters a magnetic field B, as shown in the figure. (a) Find the radius of the circular arc it describes in the magnetic field. (b) Find the angle subtended by the arc at the centre. (c) How long does the particle stay inside the magnetic field? (d) Solve the three parts of the above problem if the charge q on the particle is negative.


The figure shows a convex lens of focal length 12 cm lying in a uniform magnetic field Bof magnitude 1.2 T parallel to its principal axis. A particle with charge 2.0 × 10−3 C  and mass 2.0 × 10−5 kg is projected perpendicular to the plane of the diagram with a speed of 4.8 m s−1. The particle moves along a circle with its centre on the principal axis at a distance of 18 cm from the lens. Show that the image of the particle moves along a circle and find the radius of that circle.


When does a moving charged particle nor experience any force while moving through a uniform magnetic field?


Current flows through uniform, square frames as shown in the figure. In which case is the magnetic field at the centre of the frame not zero?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×