हिंदी

यदि A = [3-41120] और B = [212124], हो तो सत्यापित कीजिए कि (BA)2 ≠ B2A2 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि A = `[(3, -4),(1, 1),(2, 0)]` और B = `[(2, 1, 2),(1, 2, 4)]`, हो तो सत्यापित कीजिए कि (BA)2 ≠ B2A2 

योग

उत्तर

यहाँ, B = `[(2, 1, 2),(1, 2, 4)]_(2 xx 3)` और A = `[(3, -4),(1, 1),(2, 0)]_(3 xx 2)`

∴ BA = `[(6 + 1 + 4, -8 + 1 + 0),(3 + 2 + 8, -4 + 2 + 0)]_(2 xx 2)`

⇒ BA =  `[(11, -7),(13, -2)]`

L.H.S. (BA)2 = (BA) · (BA)

= `[(11, -7),(13, -2)][(11, -7),(13, -2)]`

⇒ `[(121 - 91, -77 + 14),(143 - 26, -91 + 4)]`

⇒ `[(30, -63),(117, -87)]`

R.H.S B2 = B · B

= `[(2, 1, 2),(1, 2, 4)]_(2 xx 3) * [(2, 1, 2),(1, 2, 4)]_(2 xx 3)`

यहाँ, पहले के स्तंभों की संख्या

अर्थात्, 3 दूसरे आव्यूह की पंक्तियों की संख्या के बराबर अर्थात 2 नहीं है ।

अतः B2 संभव नहीं है।

इसी प्रकार, A2 भी संभव नहीं है।

इसलिए, (BA)2 · B2A2 

shaalaa.com
आव्यूह
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: आव्यूह - प्रश्नावली [पृष्ठ ५४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 3 आव्यूह
प्रश्नावली | Q 14 | पृष्ठ ५४

संबंधित प्रश्न

आव्यूह  A = [aij]2×2 की रचना कीजिए  जिसके अवयव aij इस प्रकार हैं कि aij = e2ix sin jx.


आव्यूह A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` है।


यदि A और B समान कोटि के आव्यूह हैं तब (3A -2B)′ = ______


आव्यूहों का योग तभी परिभाषित है जब प्रत्येक की कोटि ______ है।


यदि दो आव्यूह A और B समान कोटि के हैं तब 2A + B = B + 2A.


यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A की कोटि लिखिए।


एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = `("i" - 2"j")^2/2` इस प्रकार से प्राप्त होते हैं।


आव्यूह समीकरण `x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]` को संतुष्ट करने वाले x के शून्येतर मान निकालिए।


यदि `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]` हो तो A ज्ञात कीजिए।


x तथा y के लिए हल कीजिए।

`x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O


यदि `[(2, 1, 3)] [(-1, 0, -1),(-1, 1, 0),(0, 1, 1)] [(1),(0),(-1)]` = A हो तो A ज्ञात कीजिए।


यदि A = `[(1, 2),(4, 1),(5, 6)]` तथा B = `[(1, 2),(6, 4),(7, 3)]` हों तो सत्यापित कीजिए कि  (2A + B)′ = 2A′ + B′


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (AT)T = A


A = `[(0, 1, -1),(4, -3, 4),(3, -3, 4)]` के लिए सत्यापित कीजिए कि A2 = I


गणितीय आगम के प्रयोग से सिद्ध कीजिए कि किसी भी वर्ग आव्यूह के लिए (A′)n = (An)′, जहाँ n ∈ N


प्रारंभिक पंक्ति संक्रियाओं से निम्नलिखित आव्यूह का व्युत्क्रम (यदि संभव हो तो) ज्ञात कीजिए:

`[(1, 3),(-5, 7)]`


प्रारंभिक पंक्ति संक्रियाओं से निम्नलिखित आव्यूह का व्युत्क्रम (यदि संभव हो तो) ज्ञात कीजिए:

`[(1, -3),(-2, 6)]`


यदि P(x) = `[(cosx, sinx),(-sinx, cosx)]`, हो तो दिखाइए कि P(x) . (y) = P(x + y) = P(y) . P(x)


यदि A एक वर्ग आव्यूह है जो A2 = A को संतुष्ट करता है तो दिखाइए कि (I + A)2 = 7A + I


आव्यूह `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` को एक सममित तथा एक विषम सममित आव्यूह के योग के रूप में लिखिए।


यदि आव्यूह A = [aij]2×2 इस प्रकार है कि aij `[:( 1  "यदि i" ≠ "j" ),( 0  "यदि i" ≠ "j" ):]` तब A2 बराबर है।


आव्यूह `[ (1, 0, 0 ), ( 0, 2, 0), (0, 0, 4 )]` एक


प्रारंभिक स्तंभ संक्रिया C2 → C2 – 2C1, का प्रयोग आव्यूह समीकरण

`[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, में करने पर हमें प्राप्त होता है।


यदि A और B समान कोटि के वर्ग आव्यूह हैं तो (kA)′ = ______ (k कोई अदिश है।)


यदि A और B सममित आव्यूह हैं तो BA – 2AB ______ है।


दो आव्यूह समान होते हैं यदि उनकी पंक्तियों तथा स्तंभों की संख्या समान हो।


आव्यूहों का गुणन क्रम विनिमेय होता है।


यदि आव्यूह AB = O, तब A = O या B = O या दोनों A और B शून्य आव्यूह हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×