हिंदी

यदि एक समलंब की असमांतर भुजाएँ बराबर हों, तो सिद्ध कीजिए कि यह एक चक्रीय है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि एक समलंब की असमांतर भुजाएँ बराबर हों, तो सिद्ध कीजिए कि यह एक चक्रीय है।

योग

उत्तर

दिया गया है - ABCD एक समलंब है जिसकी असमांतर भुजाएँ AD और BC बराबर हैं।

सिद्ध करना है - समलंब ABCD चक्रीय है।

BE को मिलाने पर, जहाँ BE || AD

प्रमाण - चूँकि, AB || DE और AD || BE

चूँकि, चतुर्भुज ABED एक समांतर चतुर्भुज है।

∴ ∠BAD = ∠BED     ...(i)  [समांतर चतुर्भुज के सम्मुख कोण बराबर होते हैं।]

तथा AD = BE      ...(ii)   [समांतर चतुर्भुज के सम्मुख कोण बराबर होते हैं।]

लेकिन AD = BC     [दिया गया है।]   ...(iii)

समीकरण (ii) और (iii) से,

BC = BE

⇒ ∠BEC = ∠BCE     ...(iv)  [समान भुजाओं के सम्मुख कोण बराबर होते हैं।]

साथ ही, ∠BEC + ∠BED = 180°    ...[रैखिक युग्म अभिगृहीत]

∴ ∠BCE + ∠BAD = 180°     ...[समीकरण (i) और (iv) से]

यदि किसी चतुर्भुज के सम्मुख कोणों का योग 180° हो, तो चतुर्भुज चक्रीय होता है।

अत:, समलंब ABCD एक चक्रीय है।

अतः सिद्ध हुआ।

shaalaa.com
चक्रीय चतुर्भुज
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: वृत्त - प्रश्नावली 10.4 [पृष्ठ १०७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
अध्याय 10 वृत्त
प्रश्नावली 10.4 | Q 2. | पृष्ठ १०७

संबंधित प्रश्न

यदि एक समलंब की असमांतर भुजाएँ बराबर हों, तो सिद्ध कीजिए कि वह चक्रीय है।


दो वृत्त दो बिन्दुओं B और C पर प्रतिच्छेद करते हैं । B से जाने वाले दो रेखाखंड ABD और PBQ वृतों को A, D और P, Q पर क्रमश: प्रतिछेद करते हुए खींचे गए हैं (देखिए आकृति में)। सिद्ध कीजिए कि ∠ACP = ∠QCD है।


यदि किसी त्रिभुज की दो भुजाओं को व्यास मानकर वृत्त खींचे जाएँ, तो सिद्ध कीजिए कि इन वृत्तों का प्रतिच्छेद बिन्दु तीसरी भुजा पर स्थित है।


सिद्ध कीजिए कि एक चक्रीय समांतर चतुर्भुज एक आयत होता है।


सिद्ध कीजिए कि दो प्रतिच्छेद करते हुए वृत्तों के केंद्रों की रेखा प्रतिच्छेदन के दो बिंदुओं पर समान कोण अंतरित करती है।


एक वृत्त की क्रमशः 5 सेमी 11 सेमी लम्बाई की दो जीवाएँ AB और CD एक दूसरे के समानांतर हैं और इसके केंद्र के विपरीत दिशा में हैं। यदि AB और CD के बीच की दूरी 6 सेमी है, तो वृत्त की त्रिज्या ज्ञात कीजिए।


मान लीजिए कि एक कोण ABC का शीर्ष एक वृत्त के बाहर स्थित है और कोण की भुजाएँ वृत्त के साथ समान जीवाओं AD और CE को प्रतिच्छेद करती हैं। सिद्ध कीजिए कि ∠ABC, जीवाओं AC और DE द्वारा केंद्र में अंतरित कोणों के अंतर के आधे के बराबर है।


AC और BD एक वृत्त की जीवाएँ हैं जो परस्पर समद्विभाजित होती हैं। सिद्ध कीजिए:
(I) AC और BD व्यास हैं,
(Ii) ABCD एक आयत है।


ABCD एक ऐसा चतुर्भुज है कि A शीर्षों B, C और D से होकर जाने वाले वृत्त का केंद्र है। सिद्ध कीजिए कि ∠CBD + ∠CDB = `1/2` ∠BAD है।


यदि किसी चक्रीय चतुर्भुज की सम्मुख भुजाओं का एक युग्म बराबर है, तो सिद्ध कीजिए कि इसके विकर्ण भी बराबर हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×