Advertisements
Advertisements
Question
यदि एक समलंब की असमांतर भुजाएँ बराबर हों, तो सिद्ध कीजिए कि यह एक चक्रीय है।
Solution
दिया गया है - ABCD एक समलंब है जिसकी असमांतर भुजाएँ AD और BC बराबर हैं।
सिद्ध करना है - समलंब ABCD चक्रीय है।
BE को मिलाने पर, जहाँ BE || AD
प्रमाण - चूँकि, AB || DE और AD || BE
चूँकि, चतुर्भुज ABED एक समांतर चतुर्भुज है।
∴ ∠BAD = ∠BED ...(i) [समांतर चतुर्भुज के सम्मुख कोण बराबर होते हैं।]
तथा AD = BE ...(ii) [समांतर चतुर्भुज के सम्मुख कोण बराबर होते हैं।]
लेकिन AD = BC [दिया गया है।] ...(iii)
समीकरण (ii) और (iii) से,
BC = BE
⇒ ∠BEC = ∠BCE ...(iv) [समान भुजाओं के सम्मुख कोण बराबर होते हैं।]
साथ ही, ∠BEC + ∠BED = 180° ...[रैखिक युग्म अभिगृहीत]
∴ ∠BCE + ∠BAD = 180° ...[समीकरण (i) और (iv) से]
यदि किसी चतुर्भुज के सम्मुख कोणों का योग 180° हो, तो चतुर्भुज चक्रीय होता है।
अत:, समलंब ABCD एक चक्रीय है।
अतः सिद्ध हुआ।
APPEARS IN
RELATED QUESTIONS
किसी वृत्त की एक जीवा वृत्त की त्रिज्या के बराबर है। जीवा द्वारा लघु चाप के किसी बिंदु पर अंतरित कोण ज्ञात कीजिए तथा दीर्घ चाप के किसी बिंदु पर भी अंतरित कोण ज्ञात कीजिए।
आकृति में, ∠PQR = 100° है, जहाँ P, Q तथा R केंद्र O वाले एक वृत्त पर स्थित बिंदु हैं। ∠OPR ज्ञात कीजिए।
ABCD एक चक्रीय चतुर्भुज है जिसके विकर्ण एक बिन्दु E पर प्रतिच्छेद करते हैं। यदि ∠DBC = 70° और ∠BAC = 30° हो, तो ∠BCD ज्ञात कीजिए। पुनः यदि AB = BC हो, तो ∠ECD ज्ञात कीजिए।
यदि एक चक्रीय चतुर्भुज के विकर्ण उसके शीर्षों से जाने वाले वृत्त के व्यास हों, तो सिद्ध कीजिए कि वह एक आयत है।
दो वृत्त दो बिन्दुओं B और C पर प्रतिच्छेद करते हैं । B से जाने वाले दो रेखाखंड ABD और PBQ वृतों को A, D और P, Q पर क्रमश: प्रतिछेद करते हुए खींचे गए हैं (देखिए आकृति में)। सिद्ध कीजिए कि ∠ACP = ∠QCD है।
सिद्ध कीजिए कि दो प्रतिच्छेद करते हुए वृत्तों के केंद्रों की रेखा प्रतिच्छेदन के दो बिंदुओं पर समान कोण अंतरित करती है।
एक वृत्त की दो समानांतर जीवाओं की लंबाई 6 सेमी और 8 सेमी है। यदि छोटी जीवा केंद्र से 4 सेमी की दूरी पर है, तो केंद्र से दूसरी जीवा की दूरी क्या है?
एक त्रिभुज ABC के कोण A, B और C के समद्विभाजक इसके परिवृत्त को क्रमशः D, E और F पर प्रतिच्छेद करते हैं। सिद्ध कीजिए कि त्रिभुज DEF के कोण हैं `90^@-1/2A, 90^@-1/2B" तथा "90^@-1/2C` हैं
ABCD एक ऐसा चतुर्भुज है कि A शीर्षों B, C और D से होकर जाने वाले वृत्त का केंद्र है। सिद्ध कीजिए कि ∠CBD + ∠CDB = `1/2` ∠BAD है।
एक चतुर्भुज ABCD एक वृत्त के अंतर्गत इस प्रकार है कि AB वृत्त का व्यास है और ∠ADC = 130° है। ∠BAC ज्ञात कीजिए।