Advertisements
Advertisements
Question
एक त्रिभुज ABC के कोण A, B और C के समद्विभाजक इसके परिवृत्त को क्रमशः D, E और F पर प्रतिच्छेद करते हैं। सिद्ध कीजिए कि त्रिभुज DEF के कोण हैं `90^@-1/2A, 90^@-1/2B" तथा "90^@-1/2C` हैं
Solution
यह दिया गया है कि BE, ∠B का समद्विभाजक है।
∴ ∠ABE = ∠B/2
हालाँकि, ∠ADE = ∠ABE (जीवा AE के लिए एक ही खंड में कोण)
⇒ ∠ADE = ∠B/2
वैसे ही, ∠ACF = ∠ADF = ∠C/2 (जीवा AF के लिए एक ही खंड में कोण)
∠D = ∠ADE + ∠ADF
`=(angleB)/2 + (angleC)/2`
`=1/2(angleB+angleC)`
`=1/2(180^@-angleA)`
`=90^@-1/2angleA`
इसी प्रकार, यह सिद्ध किया जा सकता है कि
`angleE=90^@-1/2angleB`
`angleF=90^@-1/2angleC`
APPEARS IN
RELATED QUESTIONS
आकृति में, ∠PQR = 100° है, जहाँ P, Q तथा R केंद्र O वाले एक वृत्त पर स्थित बिंदु हैं। ∠OPR ज्ञात कीजिए।
ABCD एक चक्रीय चतुर्भुज है जिसके विकर्ण एक बिन्दु E पर प्रतिच्छेद करते हैं। यदि ∠DBC = 70° और ∠BAC = 30° हो, तो ∠BCD ज्ञात कीजिए। पुनः यदि AB = BC हो, तो ∠ECD ज्ञात कीजिए।
उभयनिष्ठ कर्ण AC वाले दो समकोण त्रिभुज ABC और ADC हैं। सिद्ध कीजिए कि ∠CAD = ∠CBD हैं।
सिद्ध कीजिए कि एक चक्रीय समांतर चतुर्भुज एक आयत होता है।
एक वृत्त की दो समानांतर जीवाओं की लंबाई 6 सेमी और 8 सेमी है। यदि छोटी जीवा केंद्र से 4 सेमी की दूरी पर है, तो केंद्र से दूसरी जीवा की दूरी क्या है?
मान लीजिए कि एक कोण ABC का शीर्ष एक वृत्त के बाहर स्थित है और कोण की भुजाएँ वृत्त के साथ समान जीवाओं AD और CE को प्रतिच्छेद करती हैं। सिद्ध कीजिए कि ∠ABC, जीवाओं AC और DE द्वारा केंद्र में अंतरित कोणों के अंतर के आधे के बराबर है।
किसी त्रिभुज ABC में, यदि ∠A का समद्विभाजक तथा BC का लंब समद्विभाजक प्रतिच्छेद करें, तो सिद्ध कीजिए कि वे ∆ABC के परिवृत्त पर प्रतिच्छेद करेंगे।
यदि A, B, C और D चार बिंदु इस प्रकार हैं कि ∠BAC = 45° और ∠BDC = 45° है, तो A, B, C और D चक्रीय है।
यदि किसी चक्रीय चतुर्भुज की सम्मुख भुजाओं का एक युग्म बराबर है, तो सिद्ध कीजिए कि इसके विकर्ण भी बराबर हैं।
एक चतुर्भुज ABCD एक वृत्त के अंतर्गत इस प्रकार है कि AB वृत्त का व्यास है और ∠ADC = 130° है। ∠BAC ज्ञात कीजिए।