हिंदी

यदि सभी n ∈ N के लिए, 10n + 3.4n + 2 + k, संख्या 9 से भाज्य है, तो k का लघुतम पूर्णांक मान ______। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि सभी n ∈ N के लिए, 10n + 3.4n + 2 + k, संख्या 9 से भाज्य है, तो k का लघुतम पूर्णांक मान ______।

विकल्प

  • 5

  • 3

  • 7

  • 1

MCQ
रिक्त स्थान भरें

उत्तर

यदि सभी n ∈ N के लिए, 10n + 3.4n + 2 + k, संख्या 9 से भाज्य है, तो k का लघुतम पूर्णांक मान 5 है।

स्पष्टीकरण:

देखिए, P(n) = 10n + 3.4n + 2 + k।

यह जान लें कि, यह 9 से भाज्य है, ∀ n ∈ N।

P(1) के लिए गणना करें।

​⇒ P(1) ​= 101 + 3.41 + 2 + k

= 10 + 3.64 + k

= 202 + k​

पता है कि, यह भी 9 से विभाज्य है।

यह समझें कि, यदि (202 + k), 9 से विभाज्य है, तो k को 5 के बराबर होना चाहिए।

= 202 + 5 = 207 जो 9 से विभाज्य है।

⇒ `207/9` = 23

इसलिए, k का लघुतम पूर्णांक k = 5 है।

सही विकल्प है 5 है।

shaalaa.com
गणितीय आगमन का सिद्धांत
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: गणितीय आगमन का सिद्धांत - प्रश्नावली [पृष्ठ ७२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
अध्याय 4 गणितीय आगमन का सिद्धांत
प्रश्नावली | Q 26. | पृष्ठ ७२

संबंधित प्रश्न

सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

1.2 + 2.22 + 3.22 + ………. + n.2n = (n – 1). 2n+1 + 2


102n-1 + 1, संख्या 11 से भाज्य है।


32n+2 – 8n- 9, संख्या 8 से भाज्य है।


गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):

सभी प्राकृत संख्याओं n ≥ 2 के लिए सिद्ध कीजिए कि `sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`


गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):

सभी प्राकृत संख्याओं n ≥ 2 के लिए, `(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`


किसी अनुक्रम a1, a2, a3... को इस प्रकार परिभाषित कीजिए कि a1 = 2, a= 5 an–1. जो सभी प्राकृत संख्याओं n ≥ 2 के लिए,

गणितीय आगमन के सिद्धांत का प्रयोग करके सिद्ध कीजिए कि सभी प्राकृत संख्याओं के लिए, अनुक्रम के पद, सूत्र an = 2.5n–1 को संतुष्ट करते हैं।


बीजगणित (algebra) के वितरण नियम द्वारा सभी वास्तविक संख्याओं c, a1 और a2 के लिए, c(a1 + a2) = ca1 + ca2. इस वितरण नियम तथा गणितीय आगमन का प्रयोग करके, सिद्ध कीजिए कि, सभी प्राकृत संख्याओं n ≥ 2, के लिए, यदि c, a1, a2,..., an वास्तविक संख्याएँ हैं, तो c(a1 + a2 + ... + an) = ca1 + ca2 + ... + can


आगमन विधि द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्याओं n के लिए, sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β)

= `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`


गणितीय आगमन के सिद्धांत द्वारा सिद्ध कीजिए कि श्रेणी (series), 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... के n पदों का योगफल Sn, निम्नलिखित प्रकार है, Sn = `{{:((n(n + 1)^2)/2",",  "यदि n सम है"),((n^2(n + 1))/2",",  "यदि n विषम है"):}`


एक विद्यार्थी को किसी कथन P(n) को गणितीय आगमन द्वारा सिद्ध करने के लिए कहा गया। उसने सिद्ध किया कि, सभी k > 5 ∈ N के लिए P(k + 1) सत्य है, जब कभी P(k) सत्य है और यह कि P(5) भी सत्य है। इसके आधार पर उसने निष्कर्ष निकाला कि P(n) सत्य है,


बताइए कि गणितीय आगमन द्वारा कथन P(n) : 12 + 22 + ... + n2 = `(n(n + 1)(2n + 1))/6` की निम्नलिखित उपपत्ति सत्य है या असत्य है।

उपपत्ति गणितीय आगमन के सिद्धांत द्वारा n = 1 के लिए P(n) सत्य है, क्योंकि

`1^2 = 1 = (1(1 + 1)(2.1 + 1))/6` पुन: किसी k ≥ 1 के लिए k2 = `(k(k + 1)(2k + 1))/6`

अब हम सिद्ध करेंगे कि `(k + 1)^2 = ((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`


एक ऐसे कथन P(n) का उदाहरण दीजिए, जो सभी n ≥ 4 के लिए सत्य है किंतु P(1), P(2) तथा P(3) सत्य नहीं है। अपने उत्तर का औचित्य भी बताइए।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए, 23n − 1, संख्या 7 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए, n3 − 7n + 3, संख्या 3 भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

किसी प्राकृत संख्या n के लिए 7n − 2n संख्या 5 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

किसी प्राकृत संख्या n के लिए, xn − yn, x − y से भाज्य है, जहाँ x तथा y पूर्णांक है और x ≠ y.


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

प्रत्येक प्राकृत संख्या n के लिए, n(n2 + 5), संख्या 6 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n ≥ 5 के लिए, n2 < 2n.


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए, 1 + 5 + 9 + ... + (4n − 3) = n(2n − 1)


सभी प्राकृत संख्या k के लिए एक अनुक्रम b0, b1, b2 ...., b0 = 5 तथा bk = 4 + bk − 1 द्वारा परिभाषित है। गणितीय आगमन के प्रयोग द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए bn = 5 + 4n.


सभी n ∈ N के लिए, सिद्ध कीजिए कि,

cosα + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n  - 1)/2)beta)sin((nbeta)/2))/(sin  beta/2)`


सभी n ∈ N के लिए, सिद्ध कीजिए कि, cosθ cos2θ cos22θ ... cos2n−1θ = `(sin2^nθ)/(2^nsinθ)`.


सभी n ∈ N के लिए, सिद्ध कीजिए कि, `sintheta + sin2theta + sin3theta + ... + sinntheta = ((sin  ntheta)/2 sin(n + 1)/2theta)/(sin  theta/2)`


यदि xn − 1.x − k, से भाज्य है, तो k का न्यूनतम पूर्णांक है:


यदि P(n) : 2n < n!, n ∈ N, तो P(n) सभी n ≥ ______ के लिए सत्य है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×