Advertisements
Advertisements
प्रश्न
यदि P(n) : 2n < n!, n ∈ N, तो P(n) सभी n ≥ ______ के लिए सत्य है।
उत्तर
यदि P(n) : 2n < n!, n ∈ N, तो P(n) सभी n ≥ 4 के लिए सत्य है।
स्पष्टीकरण:
देखिए P(n) = 2n < n!, ∀ n ∈ N
n = 1 के लिए गणना करें।
इसलिए, यह सच नहीं है।
n = 2 के लिए गणना करें।
⇒ 2 × 2 < 2!
⇒ 4 < 2
इसलिए, यह सच नहीं है।
n = 3 के लिए गणना करें।
⇒ 2 × 3 < 3!
⇒ 6 < 3.2.1
⇒ 6 < 6
इसलिए, यह सच नहीं है।
n = 4 के लिए गणना करें।
⇒ 2 × 4 < 4!
⇒ 8 < 4.3.2.1
⇒ 8 < 24
इसलिए, यह सच है।
n = 5 के लिए गणना करें।
⇒ 2 × 5 < 5!
⇒ 10 < 5.4.3.2.1
⇒ 10 < 120
इसलिए, यह सच है।
इसलिए, n ≥ 4 के लिए P(n) सच है।
इसलिए, अगर P(n) : 2n!, n ∈ N तब n ≥ 4 के लिए P(n) सच है।
अगर P(n) : 2n!, n ∈ N तब n ≥ 4 के लिए P(n) सच है।
APPEARS IN
संबंधित प्रश्न
सभी n ∈ N के लिए गणितीय प्रेरण के सिद्धांत का उपयोग करके निम्नलिखित को सिद्ध करें:
`1^3 + 2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि `1+ 1/((1+2)) + 1/((1+2+3)) +...+ 1/((1+2+3+...n)) = (2n)/(n +1)`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) = `(n(n+1)(n+2)(n+3))/4`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: `1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1^2 + 3^2 + 5^2 + ... + (2n -1)^2 = (n(2n - 1) (2n + 1))/3`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`
102n-1 + 1, संख्या 11 से भाज्य है।
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
1 + 3 + 5 + ... + (2n – 1) = n2
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
सभी प्राकृत संख्याओं n ≥ 2 के लिए सिद्ध कीजिए कि `sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
22n - 1 संख्या 3 से भाज्य है।
एक विद्यार्थी को किसी कथन P(n) को गणितीय आगमन द्वारा सिद्ध करने के लिए कहा गया। उसने सिद्ध किया कि, सभी k > 5 ∈ N के लिए P(k + 1) सत्य है, जब कभी P(k) सत्य है और यह कि P(5) भी सत्य है। इसके आधार पर उसने निष्कर्ष निकाला कि P(n) सत्य है,
बताइए कि गणितीय आगमन द्वारा कथन P(n) : 12 + 22 + ... + n2 = `(n(n + 1)(2n + 1))/6` की निम्नलिखित उपपत्ति सत्य है या असत्य है।
उपपत्ति गणितीय आगमन के सिद्धांत द्वारा n = 1 के लिए P(n) सत्य है, क्योंकि
`1^2 = 1 = (1(1 + 1)(2.1 + 1))/6` पुन: किसी k ≥ 1 के लिए k2 = `(k(k + 1)(2k + 1))/6`
अब हम सिद्ध करेंगे कि `(k + 1)^2 = ((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
प्रत्येक प्राकृत संख्या n के लिए, n(n2 + 5), संख्या 6 से भाज्य है।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, 2n < (n + 2)!
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, 1 + 5 + 9 + ... + (4n − 3) = n(2n − 1)
सभी प्राकृत संख्या k ≥ 2 के लिए, एक अनुक्रम a1, a2, a3 ...., a1 = 3 तथा ak = 7ak − 1 द्वारा परिभाषित है। सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए an = 3.7n−1.
सभी प्राकृत संख्या k के लिए एक अनुक्रम b0, b1, b2 ...., b0 = 5 तथा bk = 4 + bk − 1 द्वारा परिभाषित है। गणितीय आगमन के प्रयोग द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए bn = 5 + 4n.
यदि सभी n ∈ N के लिए, 10n + 3.4n + 2 + k, संख्या 9 से भाज्य है, तो k का लघुतम पूर्णांक मान ______।
सभी n ∈ N के लिए, `3.5^{2n + 1} + 2^{3n + 1}`, निम्नलिखित में से किस संख्या से भाज्य है: