English

यदि P(n) : 2n < n!, n ∈ N, तो P(n) सभी n ≥ ______ के लिए सत्य है। - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि P(n) : 2n < n!, n ∈ N, तो P(n) सभी n ≥ ______ के लिए सत्य है।

Fill in the Blanks

Solution

यदि P(n) : 2n < n!, n ∈ N, तो P(n) सभी n ≥ 4 के लिए सत्य है।

स्पष्टीकरण:

देखिए P(n) = 2n < n!, ∀ n ∈ N

n = 1 के लिए गणना करें।

⇒ 2 < 1

इसलिए, यह सच नहीं है।

n = 2 के लिए गणना करें।

​⇒ 2 × 2 < 2!

⇒ 4 < 2​

इसलिए, यह सच नहीं है।

n = 3 के लिए गणना करें।

​⇒ 2 × 3 < 3!

⇒ 6 < 3.2.1

⇒ 6 < 6​

इसलिए, यह सच नहीं है।

n = 4 के लिए गणना करें।

​⇒ 2 × 4 < 4!

⇒ 8 < 4.3.2.1

⇒ 8 < 24​

इसलिए, यह सच है।

n = 5 के लिए गणना करें।

​⇒ 2 × 5 < 5!

⇒ 10 < 5.4.3.2.1

⇒ 10 < 120​

इसलिए, यह सच है।

इसलिए, n ≥ 4 के लिए P(n) सच है।

इसलिए, अगर P(n) : 2n!, n ∈ N तब n ≥ 4 के लिए P(n) सच है।

अगर P(n) : 2n!, n ∈ N तब n ≥ 4 के लिए P(n) सच है।

shaalaa.com
गणितीय आगमन का सिद्धांत
  Is there an error in this question or solution?
Chapter 4: गणितीय आगमन का सिद्धांत - प्रश्नावली [Page 72]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 11
Chapter 4 गणितीय आगमन का सिद्धांत
प्रश्नावली | Q 29. | Page 72

RELATED QUESTIONS

सभी n ∈ N के लिए गणितीय प्रेरण के सिद्धांत का उपयोग करके निम्नलिखित को सिद्ध करें:

`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि  `1+ 1/((1+2)) + 1/((1+2+3)) +...+ 1/((1+2+3+...n)) = (2n)/(n +1)`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/((2n + 1)(2n +3)) = n/(3(2n +3))`


32n+2 – 8n- 9, संख्या 8 से भाज्य है।


गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):

1 + 3 + 5 + ... + (2n – 1) = n2


गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):

सभी प्राकृत संख्याओं n ≥ 3 के लिए 2n + 1 < 2n.


बीजगणित (algebra) के वितरण नियम द्वारा सभी वास्तविक संख्याओं c, a1 और a2 के लिए, c(a1 + a2) = ca1 + ca2. इस वितरण नियम तथा गणितीय आगमन का प्रयोग करके, सिद्ध कीजिए कि, सभी प्राकृत संख्याओं n ≥ 2, के लिए, यदि c, a1, a2,..., an वास्तविक संख्याएँ हैं, तो c(a1 + a2 + ... + an) = ca1 + ca2 + ... + can


गणितीय आगमन के सिद्धान्त द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए, 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1


एक विद्यार्थी को किसी कथन P(n) को गणितीय आगमन द्वारा सिद्ध करने के लिए कहा गया। उसने सिद्ध किया कि, सभी k > 5 ∈ N के लिए P(k + 1) सत्य है, जब कभी P(k) सत्य है और यह कि P(5) भी सत्य है। इसके आधार पर उसने निष्कर्ष निकाला कि P(n) सत्य है,


किसी ऐसे कथन P(n) का उदाहरण दीजिए जो n के सभी मानों के लिए सत्य है। अपने उत्तर का औचित्य बताइए।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

प्रत्येक प्राकृत संख्या n के लिए, 4n − 1 संख्या 3 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए, n3 − 7n + 3, संख्या 3 भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

किसी प्राकृत संख्या n के लिए 7n − 2n संख्या 5 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

किसी प्राकृत संख्या n के लिए, xn − yn, x − y से भाज्य है, जहाँ x तथा y पूर्णांक है और x ≠ y.


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

प्रत्येक प्राकृत संख्या n ≥ 2 के लिए, n3 − n, संख्या 6 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n ≥ 2 के लिए, `sqrtn<1/sqrt1+1/sqrt2+…+1/sqrtn`


सभी प्राकृत संख्या k ≥ 2 के लिए अनुक्रम d1, d2, d3 ..., d1 = 2 तथा `d_k = (d_{k - 1})/k` द्वारा परिभाषित है। सिद्ध कीजिए कि सभी n ∈ N के लिए, `d_n = 2/(n!)`.


सभी n ∈ N के लिए, सिद्ध कीजिए कि, cosθ cos2θ cos22θ ... cos2n−1θ = `(sin2^nθ)/(2^nsinθ)`.


सभी प्राकृत संख्या n > 1 के लिए सिद्ध कीजिए कि `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`.


सभी n ∈ N के लिए, सिद्ध कीजिए कि n भिन्न-भिन्न distinct अवयव वाले (अंतर्विष्ट किए हुए) समुच्चय के उपसमुच्चयों की संख्या 2n है।


सभी n ∈ N के लिए, `3.5^{2n + 1} + 2^{3n + 1}`, निम्नलिखित में से किस संख्या से भाज्य है:


यदि xn − 1.x − k, से भाज्य है, तो k का न्यूनतम पूर्णांक है:


बताइए कि निम्नलिखित कथन सत्य है या असत्य है। औचित्य भी बताइए:

मान लीजिए कि P(n) एक कथन है और मान लीजिए कि किसी प्राकृत संख्या k के लिए P(k) ⇒ P(k + 1), तो P(n) सभी n ∈ N के लिए सत्य है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×