हिंदी

यदि xy = ex–y है, तो सिद्ध कीजिए कि dddydx=logx(1+logx)2 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`

योग

उत्तर

हमें प्राप्त है: xy = ex–y

दोनों पक्षों का लघुगणक लेने पर,

y log x = x – y

⇒ y(1 + log x) = x

अर्थात, y = `x/(1 + log x)`

दोनों पक्षों को x के सापेक्ष अवकलित करने पर

`("d"y)/("d"x) = ((1 + logx) * 1 - x(1/x))/(1 + logx)^2`

= `logx/(1 + log x)^2`.

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - हल उदाहरण [पृष्ठ ९३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
हल उदाहरण | Q 13 | पृष्ठ ९३

संबंधित प्रश्न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।


यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`


यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।


यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।


यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।


`[0, pi/2]` में फलन f(x) = sin 2x  के लिए रोले के प्रमेय का सत्यापन कीजिए।


f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।


`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।


f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है


फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है


यदि f(x) = `{{:("a"x + 1,"if"  x ≥ 1),(x + 2,"if"  x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।


यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।


x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।


एक संतत फलन में कुछ ऐसे बिंदु हो सकते हैं जहाँ सीमाओं का अस्तित्व न हों।


x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि"  x ≠ 0),(5",", "यदि"  x = 0):}` 


x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि"  x ≠ 4),(0",", "यदि"  x = 4):}` 


 x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}` 


x = 1 पर f(x) = |x| + |x − 1|


दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।


एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।


`log [log(logx^5)]`


sec(x + y) = xy


[0, 1] में f(x) = x(x – 1)2


[–1, 1] में f(x) = log(x2 + 2) – log3 


रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


[0, π] में f(x) = sinx – sin2x 


फलन f(x) = `(4 - x^2)/(4x - x^3)`


 यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।


फलन  f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×