Advertisements
Advertisements
प्रश्न
रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
उत्तर
हमारे पास, y = x(x – 4), x ∈ [0, 4]
क्योंकि दिया गया फलन बहुपद है, यह संतत और अवकलनीय है।
साथ ही y(0) = y(4) = 0
तो, भूमिका के प्रमेय की शर्तें संतुष्ट हैं।
अत: एक बिंदु c ∈ (0, 4) का अस्तित्व इस प्रकार है कि f'(c) = 0
⇒ 2c – 4 = 0
⇒ c = 2
⇒ x = 2 और y(2)
= 2(2 – 4)
= –4
इसलिए, वक्र पर वांछित बिंदु, जहाँ खींची गई स्पर्श रेखा x-अक्ष के समांतर है, (2, - 4) है।
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।
यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`
यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।
यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।
मान लीजिए कि f(x)= |cosx| है।जब,
फलन f(x) = |x| + |x – 1|
x = 0 पर f(x) = `{{:(|x|cos 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = 1 पर f(x) = |x| + |x − 1|
x = 2 पर, f(x) = `{{:(1 + x",", "यदि" x ≤ 2),(5 - x",", "यदि" x > 2):}`
एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।
`log [log(logx^5)]`
sinx2 + sin2x + sin2(x2)
`sin^-1 1/sqrt(x + 1)`
(sin x)cosx
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`
यदि x sin (a + y) + sin a cos (a + y) = 0 तो सिद्ध कीजिए कि `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
फलन f(x) = `"e"^|x|`
यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।
यदि f(x) = |cosx| तो `"f'"(pi/4)` = ______