हिंदी

यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि dydxdxdydydx⋅dxdy = 1 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1 

योग

उत्तर

दिया गया है: ax2 + 2hxy + by2 + 2gx + 2fy + c = 0.

दोनों पक्षों में अंतर करना w.r.t. x

`"d"/"dx" ("a"x^2 + 2"h"xy + "b"y^2 + 2"g"x + 2"f"y + "c") = "d"/"dx" (0)`

⇒ `"a"*2x + 2"h"(x * "dy"/"dx" + y*1) + "b"*2*y* "dy"/"dx" + 2"g"*1 + 2"f"* "dy"/"dx" + 0` = 0

⇒ `2"a"x + 2"h"x * "dy"/"dx" + 2"h"y + 2"b"y * "dy"/"dx" + 2"g" + 2"f" * "dy"/"dx"` = 0

⇒ `2"h"x * "dy"/"dx" + 2"b"y "dy"/"dx" + 2"f" "dy"/"dx"` = – 2ax – 2hy – 2g

⇒ `(2"h"x + 2"b"y + 2"f") "dy"/"dx"` = – 2(ax + hy + g)

⇒ `2("h"x + "b"y + "f") "dy"/"dx"` = = – 2(ax + hy + g)

⇒ `"dy"/"dx" = (-2("a"x + "h"y + "g"))/(2("h"x + "b"y + "f"))`

⇒ `"dy"/"dx" = (-("a"x + "h"y + "g"))/(("h"x + "b"y + "f"))`

अब दिए गए समीकरण को w.r.t. y.

`"d"/"dy" ("a"x^2 + 2"h"xy + "b"y^2 + 2"g"x + 2"f"y + "c") = "d"/"dy"(0)`

⇒ `2"a"x* "dx"/"dy" + 2"h" (y * "dx"/"dy" + x*1) + 2"b"y + 2"g" * "dx"/"dy" + 2"f" * 1 + 0` = 0

⇒ `2"a"x * "dx"/"dy" + 2"h"y * "dx"/"dy" + 2"h"x + 2"b"y + 2"g" * "dx"/"dy" + 2"f"` = 0

⇒ `2"a"x "dx"/"dy" + 2"h"y * "dx"/"dy" + 2"g" * "dx"/"dy"` = – 2hx – 2by – 2f

⇒ `(2"a"x + 2"h"y + 2"g") "dx"/"dy"` = = – 2hx – 2by – 2f

⇒ `"dx"/"dy" = (-2"h"x - 2"b"y - 2"f")/(2"a"x + 2"h"y + 2"g")`

⇒ `"dx"/"dy" = (-2("h"x + "b"y + "f"))/(2("a"x + "h"y + "g"))`

⇒ `"dx"/"dy" = (-("h"x + "b"y + "f"))/(("a"x + "h"y + "g"))`

∴ `"dy"/"dx" * "dx"/"dy" = [(-("a"x + "h"y + "g"))/(("h"x + "b"y + "f"))][(-("h"x + "b"y + "f"))/(("a"x + "h"y + "g"))]` = 1

इसलिए, `"dy"/"dx" * "dx"/"dy"` = 1.

इसलिए साबित हुआ।

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 58 | पृष्ठ १०९

संबंधित प्रश्न

क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin3 x + cos6 x


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(5x)^(3 cos 2x)`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin-1 `(x sqrtx), 0 ≤ x ≤ 1`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`


यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।


यदि y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)` है, तो `("d"y)/("d"x)` ज्ञात कीजिए।


यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।


[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।


उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,


फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है


यदि f(x) = `{{:("a"x + 1,"if"  x ≥ 1),(x + 2,"if"  x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।


x के सापेक्ष log10 का अवकलज ______ है।


फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।


x = 0 पर, f(x) = `{{:(x^2 sin  1/x",",  "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


`cos(tan sqrt(x + 1))`


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.


`sin xy + x/y` = x2 – y


यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`


यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`


[0, 1] में f(x) = x3 – 2x2 – x + 3 


 यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।


फलन  f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।


x3 के सापेक्ष  x2 अवकलज ______ है।


यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______


यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×