Advertisements
Advertisements
प्रश्न
`cos(tan sqrt(x + 1))`
उत्तर
माना y = `cos(tan sqrt(x + 1))`
`"dy"/"dx" = "d"/"dx" cos(tan sqrt(x + 1))`
= `- sin(tan sqrt(x + 1)) "d"/"dx" (tan sqrt(x + 1))`
= `-sin(tan sqrt(x + 1))sec^2 sqrt(x + 1) * "d"/"d"(x + 1)^(1/2)`
= `-sin(tan sqrt(x + 1))sec^2 sqrt(x + 1) 1/2 (sqrt(x + 1))^((-1)/2)`
∴ `(-1)/(2sqrt(x + 1)) * sin(tan sqrt(x + 1)) * sec^2 (sqrt(x + 1))`
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin-1 `(x sqrtx), 0 ≤ x ≤ 1`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।
फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।
यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।
x = 0 पर f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "यदि" 0 ≤ x ≤ 1):}`
x = 2 पर, f(x) = `{{:(1 + x",", "यदि" x ≤ 2),(5 - x",", "यदि" x > 2):}`
sinn (ax2 + bx + c)
(sin x)cosx
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।
tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.
`sin xy + x/y` = x2 – y
यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
[– 2, 2] में f(x) = `sqrt(4 - x^2)`
रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
[1, 5] में f(x) = `sqrt(25 - x^2)`
p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",", "यदि" x ≤ 1),("q"x + 2",", "यदि" x > 1):}` बिंदु x = 1 पर अवकलनीय हो।
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0
यदि f(x) = `x^2 sin 1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।
cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।
वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______
[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।
दो संतत फलनों का संयोजन एक संतत फलन होता है।