हिंदी

X = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ

योग

उत्तर

दिया गया है: x = 3 cosθ – 2 cos3θ और y = 3sinθ – 2 sin3θ.

दोनों प्राचलिक फलनों को अलग करना w.r.t. θ

`"dx"/("d"theta) = -3 sin theta - 6cos^2theta * "d"/("d"theta) (cos theta)`

= – 3 sin θ – 6 cos2θ . (– sin θ)

= – 3 sin θ + 6 cos2θ . sin θ

`"dy"/("d"theta) = 3 os theta - 6 sin^2theta * "d"/("d"theta) (sin theta)`

= = 3 cos θ – 6 sin2θ . cos θ क्योंकि

∴ `"dy"/"dx" = ("dy"/("d"theta))/("dx"/("d"theta))`

= `(3 cos theta - 6 sin^2theta cos theta)/(-3sin theta + 6cos^2 theta * sin theta)`

⇒ `"dy"/"dx" = (cos theta (3 - 6sin^2theta))/(sintheta(-3 + 6 cos^2 theta))`

= `(costheta[3 - 6(1 - cos^2theta)])/(sintheta[-3 + 6cos^2theta])`

= `cot theta ((3 - 6 + 6 cos^2 theta)/(-3 + 6 cos^2theta))`

= `cot theta ((-3 + 6 cos^2theta)/(-3 + 6 cos^2 theta))`

= cot θ

∴ `"dy"/"dx"` = cot θ.

shaalaa.com
सांतत्य तथा अवकलनीयता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 46 | पृष्ठ १०८

संबंधित प्रश्न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

(3x2 – 9x + 5)9


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।


यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।


अचर k का मान ज्ञात कीजिए ताकि फलन f ] x = 0 पर संतत हो, जहाँ f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}` है।


दर्शाइए कि f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।


यदि फलन f(x) = `{{:(sinx/x + cosx",",  "यदि" x ≠ 0),("k"",",  "यदि" x = 0):}` बिंदु x = 0 पर f संतत है, तो k का मान है।


मान लीजिए कि f(x)= |cosx| है।जब,


 cos x के सापेक्ष sin x का अवकलज ______ है।


x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।


y = |x – 1| एक संतत फलन है।


x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि"  x ≠ 4),(0",", "यदि"  x = 4):}` 


x = 1 पर f(x) = `{{:(x^2/2",",  "यदि"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "यदि"  1 < x ≤ 2):}` 


x = 1 पर f(x) = |x| + |x − 1|


x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "यदि"  x ≠ 2),("k"",",  "यदि"  x = 2):}`  


x = 0 पर, f(x) = `{{:(x^2 sin  1/x",",  "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


`sin sqrt(x) + cos^2 sqrt(x)`


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`


f(x) = `{{:(x^2 + 1",",  "यदि"  0 ≤ x ≤ 1),(3 - x",",  "यदि"  1 ≤ x ≤ 2):}` द्वारा दिए जाने वाले फलन पर रोले के प्रमेय की अनुप्रयोगता पर चर्चा कीजिए।


[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


[1, 4] में f(x) = `1/(4x - 1)`


[0, 1] में f(x) = x3 – 2x2 – x + 3 


 यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`


यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि  `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।


बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।


 यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।


x3 के सापेक्ष  x2 अवकलज ______ है।


वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______


यदि f.g  बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×