Advertisements
Advertisements
प्रश्न
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`
उत्तर
यह देखते हुए: xm . yn = (x + y)m+n
दोनों तरफ से log लेना
log xm . yn = log (x + y)m+n ......[∵ log xy = log x + log y]
⇒ log xm + log yn = (m + n) log (x + y)
⇒ m log x + n log y = (m + n) log (x + y)
दोनों पक्षों में अंतर करना w.r.t. x
⇒ `"m" * "d"/"dx" log x + "n" * "d"/"dx" log y = ("m" + "n") "d"/"dx" log (x + y)`
⇒ `"m" * 1/x + "n" * 1/y * "dy"/"dx" = ("m" + "n") * 1/(x + y) (1 + "dy"/"dx")`
⇒ `"m"/x + "n"/y * "dy"/"dx" = ("m" + "n")/(x + y) * (1 + "dy"/"dx")`
⇒ `"m"/x + "n"/y * "dy"/"dx" = ("m" + "n")/(x + y) + ("m" + "n")/(x + y) * "dy"/"dx"`
⇒ `"n"/y * "dy"/"dx" - ("m" + "n")/(x + y) * "dy"/"dx" = ("m" + "n")/(x + y) - "m"/x`
⇒ `("n"/y - ("m" + "n")/(x + y))"dy"/"dx" = ("m" + "n")/(x + y) - "m"/x`
⇒ `(("n"x + "n"y - "m"y - "n"y)/(y(x + y)))"dy"/"dx" = (("m"x + "n"x - "m"x - "m"y)/(x(x + y)))`
⇒ `(("n"x - "m"y)/(y(x + y))) "dy"/"dx" = (("n"x- "m"y)/(x(x + y)))`
⇒ `"dy"/"dx" = ("n"x - "m"y)/(x(x + y)) xx (y(x + y))/("n"x - "m"y)`
⇒ `"dy"/"dx" = y/x`
इसलिए साबित हुआ।
APPEARS IN
संबंधित प्रश्न
क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(3x2 – 9x + 5)9
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(5x)^(3 cos 2x)`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin-1 `(x sqrtx), 0 ≤ x ≤ 1`
फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।
`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।
यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।
[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।
मान लीजिए कि f(x)= |cosx| है।जब,
यदि f(x) = `{{:("a"x + 1,"if" x ≥ 1),(x + 2,"if" x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।
y = |x – 1| एक संतत फलन है।
x = 2 पर f(x) = `{{:(3x + 5",", "यदि" x ≥ 2),(x^2",", "यदि" x < 2):}`
x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "यदि" x ≠ 0),(1/2",", "यदि" x = 0):}`
`cos(tan sqrt(x + 1))`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
यदि x = asin2t (1 + cos2t) और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`
[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`
f(x) = `{{:(x^2 + 1",", "यदि" 0 ≤ x ≤ 1),(3 - x",", "यदि" 1 ≤ x ≤ 2):}` द्वारा दिए जाने वाले फलन पर रोले के प्रमेय की अनुप्रयोगता पर चर्चा कीजिए।
[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
[1, 4] में f(x) = `1/(4x - 1)`
वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।
फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।
फलन f(x) = `"e"^|x|`
वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______
यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।