मराठी

यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि dydxdydx=yx - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

 यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`

बेरीज

उत्तर

यह देखते हुए: xm . yn = (x + y)m+n 

दोनों तरफ से log लेना

log xm . yn = log (x + y)m+n   ......[∵ log xy = log x + log y]

⇒ log xm + log yn = (m + n) log (x + y)

⇒ m log x + n log y = (m + n) log (x + y)

दोनों पक्षों में अंतर करना w.r.t. x

⇒ `"m" * "d"/"dx" log x + "n" * "d"/"dx" log y = ("m" + "n") "d"/"dx" log (x + y)`

⇒ `"m" * 1/x + "n" * 1/y * "dy"/"dx" = ("m" + "n") * 1/(x + y) (1 + "dy"/"dx")`

⇒ `"m"/x + "n"/y * "dy"/"dx" = ("m" + "n")/(x + y) * (1 + "dy"/"dx")`

⇒ `"m"/x + "n"/y * "dy"/"dx" = ("m" + "n")/(x + y) + ("m" + "n")/(x + y) * "dy"/"dx"`

⇒ `"n"/y * "dy"/"dx" - ("m" + "n")/(x + y) * "dy"/"dx" = ("m" + "n")/(x + y) - "m"/x`

⇒ `("n"/y - ("m" + "n")/(x + y))"dy"/"dx" = ("m" + "n")/(x + y) - "m"/x`

⇒ `(("n"x + "n"y - "m"y - "n"y)/(y(x + y)))"dy"/"dx" = (("m"x + "n"x - "m"x - "m"y)/(x(x + y)))`

⇒ `(("n"x - "m"y)/(y(x + y))) "dy"/"dx" = (("n"x- "m"y)/(x(x + y)))`

⇒ `"dy"/"dx" = ("n"x - "m"y)/(x(x + y)) xx (y(x + y))/("n"x - "m"y)`

⇒ `"dy"/"dx" = y/x`

इसलिए साबित हुआ।

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ ११०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 80. (i) | पृष्ठ ११०

संबंधित प्रश्‍न

क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।


फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।


यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।


[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।


`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।


फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है


उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।


y = |x – 1| एक संतत फलन है।


x = 1 पर f(x) = `{{:(x^2/2",",  "यदि"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "यदि"  1 < x ≤ 2):}` 


सिद्ध कीजिए कि f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`  से परिभाषित फलन f बिंदु x = 0 पर असंतत रहता है, चाहे k का कोई भी मान लिया जाए।


a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",",  "यदि"  x < 4),("a" + "b"",",  "यदि"  x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि"  x > 4):}`

बिंदु x = 4 पर संतत है।


`sin^-1  1/sqrt(x + 1)`


`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`


 यदि x = asin2t (1 + cos2t)  और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`


(x2 + y2)2 = xy


[– 2, 2] में f(x) = `sqrt(4 - x^2)` 


[0, 1] में f(x) = x3 – 2x2 – x + 3 


[0, π] में f(x) = sinx – sin2x 


यदि  f(x) = 2x और g(x) = `x^2/2 + 1` है तो निम्नलिखित में से कौन - सा फलन असंतत हो सकता है?


 यदि y = `sqrt(sinx + y)` है, तो `"dy"/"dx"` बराबर है।


 cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।


यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______


[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×