मराठी

P और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = p,यदिq,यदि{x2+3x+p, यदि x≤1qx+2, यदि x>1 बिंदु x = 1 पर अवकलनीय हो। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",",  "यदि"  x ≤ 1),("q"x + 2",",  "यदि"  x > 1):}` बिंदु x = 1 पर अवकलनीय हो।

बेरीज

उत्तर

दिया गया है कि: f(x) = `{{:(x^2 + 3x + "p"",",  "यदि"  x ≤ 1),("q"x + 2",",  "यदि"  x > 1):}`  x = 1 पर

L.H.L. f'(c) = `lim_(x -> 1^-) ("f"(x) - "f"("c"))/(x - "c")`

⇒ f'(1) = `lim_(x -> 1^-) ("f"(x) - "f"(1))/(x - 1)`

= `lim_(x -> 1^-) ((x^2 + 3x + "p") - (1 + 3 + "p"))/(x - 1)`

= `lim_("h" -> 0) ([(1 - "h")^2 + 3(1 - "h") + "p"] - [4 + "p"])/(1 - "h" - 1)`

= `lim_("h" -> 0) ([1 + "h"^2 - 2"h" + 3 - 3"h" + "p"] - [4 + "p"])/(-"h")`

= `lim_("h" -> 0) (["h"^2 - 5"h" + 4 + "p"] - [4 + "p"])/(-"h")`

= `lim_("h" -> 0) ("h"^2 - 5"h" + 4 + "p" - 4 - "p")/(-"h")`

= `lim_("h" -> 0) ("h"^2 - 5"h")/(-"h")`

= `lim_("h" -> 0) ("h"["h" - 5])/(-"h")`

= 5

R.H.L. f'(1) = `lim_(x -> 1^+) ("f"(x) - "f"(1))/(x - 1)`

= `lim_(x -> 1^+) (("q"x + 2) - (1 + 3 + "p"))/(x - 1)`

= `lim_("h" -> 0) (["q"(1 + "h") + 2] - [4 + "p"])/(1 + "h" - 1)`

= `lim_("h" -> 0) ("q" + "qh" + 2 - 4 - "p")/"h"`

= `lim_("h" -> 0) ("qh" + "q" - 2 - "p")/"h"`

मौजूदा सीमा के लिए

q – 2 – p = 0

⇒ q – p = 2

⇒ `lim_("h" -> 0) ("qh" - 0)/"h"` = q

यदि L.H.L. f'(1) = R.H.L. f'(1) फिर q = 5

अब q का मान समीकरण (i) में रखने पर

5 – p = 2

⇒ p = 3.

अत: p का मान 3 है और q का 5 है।

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ ११०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 79 | पृष्ठ ११०

संबंधित प्रश्‍न

क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

(3x2 – 9x + 5)9


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(5x)^(3 cos 2x)`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin-1 `(x sqrtx), 0 ≤ x ≤ 1`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।


यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।


दर्शाइए कि f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।


यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।


यदि फलन f(x) = `{{:(sinx/x + cosx",",  "यदि" x ≠ 0),("k"",",  "यदि" x = 0):}` बिंदु x = 0 पर f संतत है, तो k का मान है।


f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है


`log (x + sqrt(x^2 + "a"))`


`log [log(logx^5)]`


`sin sqrt(x) + cos^2 sqrt(x)`


`sin^-1  1/sqrt(x + 1)`


`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`


`sin xy + x/y` = x2 – y


यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1 


यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`


यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`


f(x) = `{{:(x^2 + 1",",  "यदि"  0 ≤ x ≤ 1),(3 - x",",  "यदि"  1 ≤ x ≤ 2):}` द्वारा दिए जाने वाले फलन पर रोले के प्रमेय की अनुप्रयोगता पर चर्चा कीजिए।


[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।


माध्य मान प्रमेय का प्रयोग करते हुए, सिद्ध कीजिए कि वक्र y = 2x2 – 5x + 3 पर एक ऐसा बिंदु है जो A(1, 0) और B (2, 1) बिंदुओं के बीच स्थित है तथा उस पर खींची गयी स्पर्श रेखा जीवा AB के समांतर है। साथ ही, वह बिंदु भी ज्ञात कीजिए।


 यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`


बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।


मान लीजिए f(x) = |sin x| है, तब


वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×