Advertisements
Advertisements
Question
p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",", "यदि" x ≤ 1),("q"x + 2",", "यदि" x > 1):}` बिंदु x = 1 पर अवकलनीय हो।
Solution
दिया गया है कि: f(x) = `{{:(x^2 + 3x + "p"",", "यदि" x ≤ 1),("q"x + 2",", "यदि" x > 1):}` x = 1 पर
L.H.L. f'(c) = `lim_(x -> 1^-) ("f"(x) - "f"("c"))/(x - "c")`
⇒ f'(1) = `lim_(x -> 1^-) ("f"(x) - "f"(1))/(x - 1)`
= `lim_(x -> 1^-) ((x^2 + 3x + "p") - (1 + 3 + "p"))/(x - 1)`
= `lim_("h" -> 0) ([(1 - "h")^2 + 3(1 - "h") + "p"] - [4 + "p"])/(1 - "h" - 1)`
= `lim_("h" -> 0) ([1 + "h"^2 - 2"h" + 3 - 3"h" + "p"] - [4 + "p"])/(-"h")`
= `lim_("h" -> 0) (["h"^2 - 5"h" + 4 + "p"] - [4 + "p"])/(-"h")`
= `lim_("h" -> 0) ("h"^2 - 5"h" + 4 + "p" - 4 - "p")/(-"h")`
= `lim_("h" -> 0) ("h"^2 - 5"h")/(-"h")`
= `lim_("h" -> 0) ("h"["h" - 5])/(-"h")`
= 5
R.H.L. f'(1) = `lim_(x -> 1^+) ("f"(x) - "f"(1))/(x - 1)`
= `lim_(x -> 1^+) (("q"x + 2) - (1 + 3 + "p"))/(x - 1)`
= `lim_("h" -> 0) (["q"(1 + "h") + 2] - [4 + "p"])/(1 + "h" - 1)`
= `lim_("h" -> 0) ("q" + "qh" + 2 - 4 - "p")/"h"`
= `lim_("h" -> 0) ("qh" + "q" - 2 - "p")/"h"`
मौजूदा सीमा के लिए
q – 2 – p = 0
⇒ q – p = 2
⇒ `lim_("h" -> 0) ("qh" - 0)/"h"` = q
यदि L.H.L. f'(1) = R.H.L. f'(1) फिर q = 5
अब q का मान समीकरण (i) में रखने पर
5 – p = 2
⇒ p = 3.
अत: p का मान 3 है और q का 5 है।
APPEARS IN
RELATED QUESTIONS
क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin-1 `(x sqrtx), 0 ≤ x ≤ 1`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(log x)log x, x > 1
अचर k का मान ज्ञात कीजिए ताकि फलन f ] x = 0 पर संतत हो, जहाँ f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}` है।
यदि ex + ey = ex+y दिया है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = -"e"^(y - x)` है।
यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।
दर्शाइए कि (x) = f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}` द्वारा दिया जाने वाला फलन f बिंदु x = 0 पर असंतत है।
उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,
उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx द्वारा दिया जाने वाला फलन अवकलनीय है,
फलन f(x) = e x sinx, x ∈ π [0, π] के लिए, रोले के प्रमेय में c का मान है
यदि f(x) = `{{:("a"x + 1,"if" x ≥ 1),(x + 2,"if" x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।
x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",", "यदि" x ≠ 2),("k"",", "यदि" x = 2):}`
दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।
`2^(cos^(2_x)`
sinn (ax2 + bx + c)
`sin^-1 1/sqrt(x + 1)`
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।
tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.
`sin xy + x/y` = x2 – y
sec(x + y) = xy
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
माध्य मान प्रमेय का प्रयोग करते हुए, सिद्ध कीजिए कि वक्र y = 2x2 – 5x + 3 पर एक ऐसा बिंदु है जो A(1, 0) और B (2, 1) बिंदुओं के बीच स्थित है तथा उस पर खींची गयी स्पर्श रेखा जीवा AB के समांतर है। साथ ही, वह बिंदु भी ज्ञात कीजिए।
फलन f(x) = `"e"^|x|`
मान लीजिए f(x) = |sin x| है, तब
वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______
यदि f.g बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।