Advertisements
Advertisements
Question
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(log x)log x, x > 1
Solution 1
माना, y = (log x)log x
दोनों ओर लघुगणक लेने पर,
`1/y dy/dx = (sin x - cos x) d/dx log (sin x - cos x) + log (sin x - cos x) d/dx (sin x - cos x)`
`= (sin x - cos x) xx 1/(sin x - cos x) d/dx (sin x - cos x) + log (sin x - cos x)(cos x + sin x)`
`= (cos x + sin x) + log (sin x - cos x)(cos x + sin x)`
`= (cos x + sin x) [1 + log (sin x - cos x)]`
`therefore dy/dx = y (cos x + sin x) [1 + log (sin x - cos x)]`
`= (sin x - cos x)^((sin x - cos x)) (cos x + sin x)[1 + log(sin x - cos x)]`
Solution 2
माना, y = (log x)log x
दोनों ओर लघुगणक लेने पर,
log y = log x log (log x)
दोनों पक्षों (1) का x के सापेक्ष अवकलन करने पर, हम पाते हैं,
`1/y dy/dx = log x* 1/log x * 1/x + log (log x) * 1/x`
`= 1/x * [1 + log (log x)]`
`dy/dx = (log x)^(log x) * 1/x * [1 + log (log x)], x>1`
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`
मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।
[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।
`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।
मान लीजिए कि f(x)= |cosx| है।जब,
यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है
cos x के सापेक्ष sin x का अवकलज ______ है।
cos |x| प्रत्येक स्थान पर अवकलनीय है।
x = 2 पर f(x) = `{{:(3x + 5",", "यदि" x ≥ 2),(x^2",", "यदि" x < 2):}`
x = 1 पर f(x) = |x| + |x − 1|
x = 2 पर, f(x) = `{{:(1 + x",", "यदि" x ≤ 2),(5 - x",", "यदि" x > 2):}`
एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।
`2^(cos^(2_x)`
sinx2 + sin2x + sin2(x2)
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।
`sin xy + x/y` = x2 – y
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`
[– 2, 2] में f(x) = `sqrt(4 - x^2)`
[0, 1] में f(x) = x3 – 2x2 – x + 3
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।
यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।
फलन f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।
वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______
त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।