English

Sin x = tt2t1+t2, tan y = tt2t1-t2 - Mathematics (गणित)

Advertisements
Advertisements

Question

sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`

Sum

Solution

यह देखते हुए कि sin x = `(2"t")/(1 + "t"^2)` और tan y = `(2"t")/(1 - "t"^2)`

∴  sin x = `(2"t")/(1 + "t"^2)`  लेना

दोनों पक्षों को w.r.t t, से अलग करने पर, हम प्राप्त करते हैं

`cosx* "dx"/"dt" = ((1 + "t"^2) * "d"/"dt" (2"t") - 2"t" * "d"/"dt" (1 + "t"^2))/(1 + "t"^2)^2`

⇒ `cosx * "dx"/"dt" = (2(1 + "t"^2) - 2"t" * 2"t")/(1 + "t"^2)^2`

⇒ `"dx"/"dt" = (2 + 2"t"^2 - 4"t"^2)/(1 - "t"^2)^2 xx 1/cosx`

⇒ `"dx"/"dt" = (2 - 2"t"^2)/(1 + "t"^2)^2 xx 1/sqrt(1 - sin^2x)`

⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/sqrt(1 - ((2"t")/(1 + "t"^2))^2`

⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/(sqrt((1 + "t"^2)^2 - 4"t"^2)/(1 + "t"^2)^2)`

⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx (1 + "t"^2)/sqrt(1 + "t"^4 + 2"t"^2 - 4"t"^2)`

⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/sqrt(1 + "t"^4 - 2"t"^2)`

⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/sqrt((1 - "t"^2)^2`

⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/((1 - "t"^2))`

 ⇒ `"dx"/"dt" = 2/(1 + "t"^2)`

अब लेना, tan y = `2/(1 - "t"^2)`

दोनों पक्षों को w.r.t, t, से अलग करने पर, हम प्राप्त करते हैं

`"d"/"dt" (tan y) = "d"/"dt" ((2"t")/(1 - "t"^2))`

⇒ `sec^2y  "dy"/"dt" = ((1 - "t"^2) * "d"/"dt" (2"t") - 2"t" * "d"/"dt" (1 - "t"^2))/((1 - "t"^2)^2`

⇒ `sec^2y "dy"/"dt" = ((1 - "t"^2) * 2 - 2"
t" * (-2"t"))/(1 - "t"^2)^2`

⇒ `sec^2y "dy"/"dt" = (2 - 2"t"^2 + 4"t"^2)/(1 - "t"^2)^2`

⇒ `"dy"/"dt" = (2 + 2"t"^2)/(1 - "t"^2)^2 xx 1/sec^2y`

⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx 1/(1 + tan^2y)`

⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx 1/(1 + ((2"t")/(1 - "t"^2))^2`

⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx 1/(((1 - "t"^2)^2 + 4"t"^2)/(1 - "t"^2)^2)`

⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx (1 - "t"^2)^2/(1 + "t"^2 + 2"t"^2 + 4"t"^2)`

⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx (1 - "t"^2)^2/(1 + "t"^4 + 2"t"^2)`

⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx (1 - "t"^2)^2/(1 + "t"^2)^2`

⇒ `"dy"/"dt" = 2/(1 + "t"^2)`

∴ `"dy"/"dt" = ("dy"/"dt")/("dx"/"dt")`

= `(2/(1 + "t"^2))/(2/(1 + "t"^2))`

= 1

अत: `"dy"/"dt"` = 1

shaalaa.com
सांतत्य तथा अवकलनीयता
  Is there an error in this question or solution?
Chapter 5: सांतत्य और अवकलनीयता - प्रश्नावली [Page 108]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 47 | Page 108

RELATED QUESTIONS

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin3 x + cos6 x


दर्शाइए कि f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।


f(x) = `1/(x - 1)` दिया है। संयोजित फलन y = f [f(x)] में असंतत के बिंदु ज्ञात कीजिए।


यदि ex + ey = ex+y  दिया है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = -"e"^(y - x)` है।


`[0, pi/2]` में फलन f(x) = sin 2x  के लिए रोले के प्रमेय का सत्यापन कीजिए।


f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।


f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है


x के सापेक्ष sec (tan–1x) का अवकल गुणांक है


यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है 


उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।


यदि f(x) = `{{:("a"x + 1,"if"  x ≥ 1),(x + 2,"if"  x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।


y = |x – 1| एक संतत फलन है।


 x = 2 पर f(x) = `{{:(3x + 5",", "यदि"  x ≥ 2),(x^2",", "यदि"  x < 2):}` 


x = 2 पर (x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदि"  x ≠ 2),(5",", "यदिf"  x = 2):}` 


 x = a पर  f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "यदि"  x ≠ 0),(0",",  "यदि"  x = "a"):}` 


a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",",  "यदि"  x < 4),("a" + "b"",",  "यदि"  x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि"  x > 4):}`

बिंदु x = 4 पर संतत है।


x = 2 पर, f(x) = `{{:(x[x]",",  "यदि"  0 ≤ x < 2),((x - 1)x",",  "यदि"  2 ≤ x < 3):}`  


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।


यदि f(x) = `x^2 sin  1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।


मान लीजिए f(x) = |sin x| है, तब


वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______


[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।


दो संतत फलनों का संयोजन एक संतत फलन होता है।


यदि f.g  बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×