Advertisements
Advertisements
Question
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
Solution
दिया गया है: x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
दोनों प्राचलिक फलनों को अलग करना w.r.t. t
`"dx"/"dt" = ("t"^2 * "d"/"dt" (1 + log "t") - (1 + log "t") * "d"/"dt" ("t"^2))/"t"^4`
= `("t"^2 * (1/"t") - (1 + log "t") * 2"t")/"t"^4`
= `("t" - (1 + log "t") * 2"t")/"t"^4`
= `("t"[1 - 2 - 2 log "t"])/"t"^4`
= `(-(1 + 2 log "t"))/"t"^3`
y = `(3 + 2 log "t")/"t"`
`"dy"/"dt" = ("t" * "d"/"dt" (3 + 2 log "t") - (3 + 2 log "t") * "d"/"dt" ("t"))/"t"^2`
= `("t"(2/"t") - (3 + 2 log "t")* 1)/"t"^2`
= `(2 - 3 - 2 log "t")/"t"^2`
= `(-(1 + 2 log "t"))/"t"^2`
∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`
= `((-(1 + 2 log "t"))/"t"^2)/((-(1 + 2 log "t"))/"t"^3)`
= `"t"^3/"t"^2`
= t
अत: `"dy"/"dx"` = t.
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।
यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।
उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,
उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।
यदि f(x) = `{{:("a"x + 1,"if" x ≥ 1),(x + 2,"if" x < 1):}` संतत है, तो a ______ के बराबर मान होना चाहिए।
x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "यदि" x ≠ 0),(1/2",", "यदि" x = 0):}`
फलन f(x) = `1/(x + 2)` दिया है। संयोजित फलन y = f (f (x)) में असंतत्य के बिंदु ज्ञात कीजिए।
दर्शाइए कि फलन f(x) = |sin x + cos x| बिंदु x = π पर संतत है।
x = 0 पर, f(x) = `{{:(x^2 sin 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।
`2^(cos^(2_x)`
`cos(tan sqrt(x + 1))`
`sin^-1 1/sqrt(x + 1)`
(sin x)cosx
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।
tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`
माध्य मान प्रमेय का प्रयोग करते हुए, सिद्ध कीजिए कि वक्र y = 2x2 – 5x + 3 पर एक ऐसा बिंदु है जो A(1, 0) और B (2, 1) बिंदुओं के बीच स्थित है तथा उस पर खींची गयी स्पर्श रेखा जीवा AB के समांतर है। साथ ही, वह बिंदु भी ज्ञात कीजिए।
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।
cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।
यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।
[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।
त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।