Advertisements
Advertisements
Question
cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।
Options
2
`(-1)/(2sqrt(1 - x^2)`
`2/x`
1 – x2
Solution
सही उत्तर 2 है।
व्याख्या:
माना y = cos–1(2x2 – 1) और t = cos–1x
दोनों फलनों को अलग करते हुए w.r.t. x
`"dy"/"dx" = "d"/"dx" cos^-1 (2x^2 - 1)` और `"dt"/"dx" = "d"/"dx" cos^-1x`
⇒ `"dy"/"dx" = (-1)/sqrt(1 - (2x^2 - 1)^2) * "d"/"dx" (2x^2 - 1)` और `"dt"/"dx" = (-1)/sqrt(1 - x^2)`
= `(-1.4x)/sqrt(1 - (4x^4 + 1 - 4x^2)` और `"dt"/"dx" = (-1)/sqrt(1 - x^2)`
= `(-4x)/sqrt(1 - 4x^4 - 1 + 4x^2)`
= `(-4x)/sqrt(4x^2 - 4x^4)`
= `(-4x)/(2xsqrt(1 - x^2)`
⇒ `"dy"/"dx" = (-2)/sqrt(1 - x^2)`
अब `"dy"/"dx" = ("dy"/"dx")/("dt"/"dx")`
= `((-2)/sqrt(1 - x^2))/((-1)/sqrt(1 - x^2))`
= 2.
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(5x)^(3 cos 2x)`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।
फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।
दर्शाइए कि f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।
मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।
यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।
यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।
उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,
f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है
फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है
उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।
y = |x – 1| एक संतत फलन है।
एक संतत फलन में कुछ ऐसे बिंदु हो सकते हैं जहाँ सीमाओं का अस्तित्व न हों।
|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।
cos |x| प्रत्येक स्थान पर अवकलनीय है।
x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
फलन f(x) = `1/(x + 2)` दिया है। संयोजित फलन y = f (f (x)) में असंतत्य के बिंदु ज्ञात कीजिए।
x = 2 पर, f(x) = `{{:(1 + x",", "यदि" x ≤ 2),(5 - x",", "यदि" x > 2):}`
`2^(cos^(2_x)`
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.
tan–1(x2 + y2) = a
यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`
[1, 4] में f(x) = `1/(4x - 1)`
[1, 5] में f(x) = `sqrt(25 - x^2)`