English

Cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है। - Mathematics (गणित)

Advertisements
Advertisements

Question

 cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।

Options

  • 2

  • `(-1)/(2sqrt(1 - x^2)`

  • `2/x`

  • 1 – x2 

MCQ

Solution

सही उत्तर 2 है। 

व्याख्या:

माना y = cos–1(2x2 – 1) और t = cos–1x

दोनों फलनों को अलग करते हुए w.r.t. x

`"dy"/"dx" = "d"/"dx" cos^-1 (2x^2 - 1)` और `"dt"/"dx" = "d"/"dx" cos^-1x`

⇒ `"dy"/"dx" = (-1)/sqrt(1 - (2x^2 - 1)^2) * "d"/"dx" (2x^2 - 1)` और `"dt"/"dx" = (-1)/sqrt(1 - x^2)`

= `(-1.4x)/sqrt(1 - (4x^4 + 1 - 4x^2)` और `"dt"/"dx" = (-1)/sqrt(1 - x^2)`

= `(-4x)/sqrt(1 - 4x^4 - 1 + 4x^2)`

= `(-4x)/sqrt(4x^2 - 4x^4)`

= `(-4x)/(2xsqrt(1 - x^2)`

⇒ `"dy"/"dx" = (-2)/sqrt(1 - x^2)`

अब `"dy"/"dx" = ("dy"/"dx")/("dt"/"dx")`

= `((-2)/sqrt(1 - x^2))/((-1)/sqrt(1 - x^2))`

= 2.

shaalaa.com
सांतत्य तथा अवकलनीयता
  Is there an error in this question or solution?
Chapter 5: सांतत्य और अवकलनीयता - प्रश्नावली [Page 112]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 93 | Page 112

RELATED QUESTIONS

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(5x)^(3 cos 2x)`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।


फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।


दर्शाइए कि f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।


मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।


उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,


f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है


फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है


उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।


y = |x – 1| एक संतत फलन है।


एक संतत फलन में कुछ ऐसे बिंदु हो सकते हैं जहाँ सीमाओं का अस्तित्व न हों।


|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।


cos |x| प्रत्येक स्थान पर अवकलनीय है।


 x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}` 


फलन f(x) = `1/(x + 2)` दिया है। संयोजित फलन y = f (f (x)) में असंतत्य के बिंदु ज्ञात कीजिए।


x = 2 पर, f(x) = `{{:(1 + x",",  "यदि"  x ≤ 2),(5 - x",",  "यदि"  x > 2):}` 


`2^(cos^(2_x)`


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


`tan^-1 (secx + tanx), - pi/2 < x < pi/2`


`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.


tan–1(x2 + y2) = a


यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`


[1, 4] में f(x) = `1/(4x - 1)`


[1, 5] में f(x) = `sqrt(25 - x^2)` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×