Advertisements
Advertisements
Question
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(5x)^(3 cos 2x)`
Solution 1
माना y = `(5x)^(3 cos 2x)`
दोनों ओर लघुगणक लेने पर,
log y = 3 cos 2x log 5x
x के सापेक्ष अवकलन करने पर,
`1/y dy/dx = 3[cos 2x d/dx log 5x + log 5x d/dx cos 2x]`
`= 3[cos 2x * 1/(5x) d/dx (5x) + log 5x * (- sin 2x) d/dx (2x)]`
`= 3[cos 2x * 1/(5x) * 5 - 2 sin 2x log 5x]`
`= 3 [(cos 2x)/x - 2 sin 2x log 5x]`
`dy/dx = 3y [(cos 2x)/x - 2 sin 2x log 5x]`
`= 3 (5x)^(3 cos 2x) [(cos 2x)/x - 2 sin 2x log x]`
Solution 2
माना, y = `(5x)^(3cos 2x)`
दोनों ओर लघुगणक लेने पर,
log y = 3 cos 2x log (5x) = 3 cos 2x [log 5 + log x]
log y = 3 cos 2x log 5 + 3 cos 2x log x ....(1)
(1) का x के सापेक्ष अवकलन करने पर, हम पाते हैं,
`1/y dy/dx = 3 log 5 (-sin 2x)* 2 + (3 cos 2x)/x + 3 log x (-2 sin 2x)`
`= - 6 log 5 sin 2x + (3 cos 2x)/x - 6 log x sin 2x`
`dy/dx = (5x)^(3cos 2x) [(3 cos 2x)/x - 6 (log 5 + log x) sin 2x]`
`= (5x)^(3 cos 2x) [(3 cos 2x)/x - 6 log 5x sin 2x]`
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(3x2 – 9x + 5)9
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।
यदि y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)` है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
`[0, pi/2]` में फलन f(x) = sin 2x के लिए रोले के प्रमेय का सत्यापन कीजिए।
उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,
k का वह मान, जो f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}` द्वारा परिभाषित फलन को x = 0 पर संतत बना दे,
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।
यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।
cos |x| प्रत्येक स्थान पर अवकलनीय है।
x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = 1 पर f(x) = `{{:(x^2/2",", "यदि" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "यदि" 1 < x ≤ 2):}`
`8^x/x^8`
`sin sqrt(x) + cos^2 sqrt(x)`
sinx2 + sin2x + sin2(x2)
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
[0, 1] में f(x) = x(x – 1)2
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
[– 2, 2] में f(x) = `sqrt(4 - x^2)`
रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।
फलन f(x) = `"e"^|x|`
यदि f(x) = `{{:("m"x + 1",", "यदि" x ≤ pi/2),(sin x + "n"",", "यदि" x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो
यदि f(x) = |cosx| तो `"f'"(pi/4)` = ______
[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।