Advertisements
Advertisements
Question
फलन f(x) = `"e"^|x|`
Options
प्रत्येक स्थान पर संतत है, परंतु x = 0 पर अवकलनीय नहीं है।
प्रत्येक स्थान पर संतत और अवकलनीय है।
x = 0 पर संतत नहीं है।
इनमें से कोई नहीं।
Solution
सही उत्तर प्रत्येक स्थान पर संतत है, परंतु x = 0 पर अवकलनीय नहीं है।
व्याख्या:
यह देखते हुए: f(x) = `"e"^|x|`
हम जानते हैं कि मापांक फलन संतत है, लेकिन इसके प्रांत में अलग नहीं है।
माना g(x) = |x| और t(x) = ex
∴ f(x) = got(x) = g[t(x)] = `"e"^|x|`
Since g(x) और t(x) दोनों x = 0 पर संतत हैं लेकिन f(x) x = 0 पर भिन्न नहीं है।
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(3x2 – 9x + 5)9
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(5x)^(3 cos 2x)`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।
दर्शाइए कि f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।
f(x) = `1/(x - 1)` दिया है। संयोजित फलन y = f [f(x)] में असंतत के बिंदु ज्ञात कीजिए।
मान लीजिए कि f(x)= |cosx| है।जब,
|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।
x = 0 पर f(x) = `{{:(|x|cos 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = a पर f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "यदि" x ≠ 0),(0",", "यदि" x = "a"):}`
x = 1 पर f(x) = |x| + |x − 1|
x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",", "यदि" x ≠ 2),("k"",", "यदि" x = 2):}`
x = 2 पर, f(x) = `{{:(1 + x",", "यदि" x ≤ 2),(5 - x",", "यदि" x > 2):}`
sinx2 + sin2x + sin2(x2)
`sin xy + x/y` = x2 – y
(x2 + y2)2 = xy
यदि x sin (a + y) + sin a cos (a + y) = 0 तो सिद्ध कीजिए कि `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
यदि y = tan–1x, तो केवल y के पदों में `("d"^2y)/("dx"^2)` ज्ञात कीजिए।
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
f(x) = `{{:(x^2 + 1",", "यदि" 0 ≤ x ≤ 1),(3 - x",", "यदि" 1 ≤ x ≤ 2):}` द्वारा दिए जाने वाले फलन पर रोले के प्रमेय की अनुप्रयोगता पर चर्चा कीजिए।
रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
[0, 1] में f(x) = x3 – 2x2 – x + 3
[1, 5] में f(x) = `sqrt(25 - x^2)`
फलन f(x) = `(4 - x^2)/(4x - x^3)`
बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।
एक ऐसे फलन का उदाहरण जो सभी स्थानों पर संतत है, परंतु ठीक दो बिंदुओं पर अवकलनीय रहने में असमर्थ रहता है ______ है।
वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______
त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।