English

Sinxy+xy = x2 – y - Mathematics (गणित)

Advertisements
Advertisements

Question

`sin xy + x/y` = x2 – y

Sum

Solution

दिया गया है: `sin xy + x/y` = x2 – y

दोनों पक्षों में अंतर करना w.r.t. x

`"d"/"dx" sin(xy) + "d"/"dx"(x/y) = "d"/"dx" (x^2) - "d"/"dx"(y)`

⇒ `cos xy * "d"/"dx" (xy) + (y * "d"/"dx" * x - x * "dy"/"dx")/y^2 = 2x - "dy"/"dx"`

⇒ `cos y [x * "dy"/"dx" + y * 1] + ("y"*1)/"y"^2 - x/y^2 * "dy"/"dx" = 2x - "dy"/"dx"`

⇒ `x cos xy * "dy"/"dx" + y cos xy + 1/y - x/y^2 "dy"/"dx" = 2x - "dy"/"dx"`

⇒ `x cos xy * "dy"/"dx" - x/y^2 * "dy"/"dx" + "dy"/"dx" = -y cos xy - 1/y + 2x`

⇒ `[x cos xy - x/y^2 + 1] "dy"/"dx" = 2x - y cos xy - 1/y`

⇒ `([xy^2 cos xy - x + y^2])/y^2 "dy"/"dx" = (2xy - y^2 cos xy - 1)/y`

⇒ `"dy"/"dx" = (2xy - y^2 cos xy - 1)/y xx y^2/(xy^2 cos xy - x + y^2)`

= `(2xy^2 - y^3 cos(xy) - y)/(xy^2 cos (xy) - x + y^2)`

अत: `"dy"/"dx" = (2xy^2 - y^3 cos(xy) - y)/(xy^2 cos (xy) - x + y^2)`.

shaalaa.com
सांतत्य तथा अवकलनीयता
  Is there an error in this question or solution?
Chapter 5: सांतत्य और अवकलनीयता - प्रश्नावली [Page 109]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 54 | Page 109

RELATED QUESTIONS

क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin3 x + cos6 x


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin-1 `(x sqrtx), 0 ≤ x ≤ 1`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।


यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx  द्वारा दिया जाने वाला फलन अवकलनीय है,


x के सापेक्ष sec (tan–1x) का अवकल गुणांक है


x के सापेक्ष log10 का अवकलज ______ है।


y = |x – 1| एक संतत फलन है।


एक संतत फलन में कुछ ऐसे बिंदु हो सकते हैं जहाँ सीमाओं का अस्तित्व न हों।


|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।


a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",",  "यदि"  x < 4),("a" + "b"",",  "यदि"  x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि"  x > 4):}`

बिंदु x = 4 पर संतत है।


`log [log(logx^5)]`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।


sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।


sec(x + y) = xy


[0, 1] में f(x) = x(x – 1)2


वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।


p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",",  "यदि"  x ≤ 1),("q"x + 2",",  "यदि"  x > 1):}` बिंदु x = 1 पर अवकलनीय हो।


बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।


यदि f(x) = `x^2 sin  1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।


यदि f(x) = `{{:("m"x + 1",",  "यदि"  x ≤ pi/2),(sin x + "n"",",  "यदि"  x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो


फलन  f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।


यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______


वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×