Advertisements
Advertisements
Question
sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।
Solution
मान लीजिए y = `x/sinx` और z = sin x.
दोनों प्राचलिक फलनों को अलग करना w.r.t. x
`"dy"/"dx" = (sin x * "d"/"dx" (x) - x * "d"/"dx" (sin x))/(sin x)^2`
= `(sin x * 1 - x * cos x)/(sin^2x)`
= `(sinx - x cos x)/(sin^2x)`
`"dz"/"dx"` = cos x
∴ `"dy"/"dz" = ("dy"/"dx")/("dz"/"dx")`
= `((sinx - x cos x)/sin^2x)/cosx`
= `(sinx - xcosx)/(sin^2x cos x)`
= `sinx/(sin^2x cosx) - (xcosx)/(sin^2x cosx)`
= `tanx/(sin^2x) - x/(sin^2x)`
= `(tanx - x)/(sin^2x)`
इसलिए, `"dy"/"dz" = (tanx - x)/(sin^2x)`
APPEARS IN
RELATED QUESTIONS
क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।
यदि किसी c > 0 के लिए (x – a)2 + (y – b)2 – c2 है तो सिद्ध कीजिए कि `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)`, a और b से स्वतंत्र एक स्थिर राशि है।
यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।
`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।
यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है
फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है
x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।
एक संतत फलन में कुछ ऐसे बिंदु हो सकते हैं जहाँ सीमाओं का अस्तित्व न हों।
x = 1 पर f(x) = |x| + |x − 1|
x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "यदि" x ≠ 0),(1/2",", "यदि" x = 0):}`
x = 2 पर, f(x) = `{{:(1 + x",", "यदि" x ≤ 2),(5 - x",", "यदि" x > 2):}`
`log [log(logx^5)]`
(x + 1)2(x + 2)3(x + 3)4
यदि x = asin2t (1 + cos2t) और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`
यदि x sin (a + y) + sin a cos (a + y) = 0 तो सिद्ध कीजिए कि `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
[1, 5] में f(x) = `sqrt(25 - x^2)`
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।
मान लीजिए f(x) = |sin x| है, तब
cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।
यदि f(x) = |cosx| तो `"f'"(pi/4)` = ______
यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।
दो संतत फलनों का संयोजन एक संतत फलन होता है।