Advertisements
Advertisements
Question
मान लीजिए f(x) = |sin x| है, तब
Options
f प्रत्येक स्थान पर अवकलनीय है।
f प्रत्येक स्थान पर संतत है, परंतु x = nπ, n ∈ Z पर अवकलनीय नहीं है।
f प्रत्येक स्थान पर संतत है परंतु x = `(2"n" + 1) pi/2`, n ∈ Z पर अवकलनीय नहीं है।
इनमें से कोई नहीं।
Solution
सही उत्तर f प्रत्येक स्थान पर संतत है, परंतु x = nπ, n ∈ Z पर अवकलनीय नहीं है।
व्याख्या:
यह देखते हुए कि: f(x) = |sin x|
माना g(x) = sin x और t(x) = |x|
∴ f(x) = tog(x) = t[g(x)] = t(sin x) = |sin x|
जहाँ g(x) और t(x) दोनों संतत हैं।
∴ f(x) = got(x) संतत है लेकिन t(x) x = 0 पर भिन्न नहीं है।
तो, f(x) sin x = 0 पर संतत नहीं है
⇒ x = nπ, n ∈ Z.
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।
यदि फलन f(x) = `{{:(sinx/x + cosx",", "यदि" x ≠ 0),("k"",", "यदि" x = 0):}` बिंदु x = 0 पर f संतत है, तो k का मान है।
यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है
निम्नलिखित का सुमेलन कीजिए-
स्तंभ-I | स्तंभ-II |
(A) यदि फलन f(x) = `{((sin3x)/x, "यदि फलन" x = 0),("k"/2",", "यदि फलन" x = 0):}` x = 0 पर संतत है, तो k बराबर है |
(a) |x| |
(B) प्रत्येक संतत फलन अवकलनीय होता हैं | (b) सत्य |
(C) एक फलन का उदाहरण, जो प्रत्येक स्थान पर॑ संतत है, परंतु ठीक एक स्थान पर अवकलनीय नहीं है | (c) 6 |
(D) तत्समक फलन, अर्थात, f (x) = x ∀ ∈x R एक संतत फलन है |
(d) असत्य |
x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।
x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि" x ≠ 4),(0",", "यदि" x = 4):}`
x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = 5 पर f(x) = `{{:(3x - 8",", "यदि" x ≤ 5),(2"k"",", "यदि" x > 5):}`
x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",", "यदि" x ≠ 2),("k"",", "यदि" x = 2):}`
फलन f(x) = `1/(x + 2)` दिया है। संयोजित फलन y = f (f (x)) में असंतत्य के बिंदु ज्ञात कीजिए।
दर्शाइए कि फलन f(x) = |sin x + cos x| बिंदु x = π पर संतत है।
x = 0 पर, f(x) = `{{:(x^2 sin 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
`2^(cos^(2_x)`
sinn (ax2 + bx + c)
(sin x)cosx
(x + 1)2(x + 2)3(x + 3)4
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`
वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।
फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।
यदि f(x) = `x^2 sin 1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।
यदि f(x) = `{{:("m"x + 1",", "यदि" x ≤ pi/2),(sin x + "n"",", "यदि" x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो