Advertisements
Advertisements
Question
यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
Solution
दिया गया है: `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`
x = sin θ और y = sin Φ रखें।
∴ θ = sin–1x और Φ = sin–1y
`sqrt(1 - sin^2theta) + sqrt(1 - sin^2phi)` = a(sin θ – sin Φ)
⇒ `sqrt(cos^2theta) + sqrt(cos^2phi)` = a(sin θ – sin Φ)
⇒ cos θ + cos Φ = a(sin θ – sin Φ)
⇒ `(cos theta + cos phi)/(sin theta - sin phi)` = a
⇒ `(2 cos (theta + phi)/2 * cos (theta - phi)/2)/(2cos (theta + phi)/2 * sin (theta - phi)/2)` = a ......`[("क्योंकि" cos "A" + cos "B" = 2cos ("A" + "B")/2 * cos ("A" - "B")/2),(sin"A" - sin"B" = 2cos ("A" + "B")/2 * sin ("A" - "B")/2)]`
⇒ `(cos((theta - phi)/2))/(sin((theta - phi)/2))` = a
⇒ `cot((theta - phi)/2)` = a
⇒ `(theta - phi)/2 = cot^-1"a"`
⇒ θ – Φ = 2cot–1a
⇒ sin–1x – sin–1y = 2 cot–1a
दोनों पक्षों में अंतर करना w.r.t. x
`"d"/"dx" (sin^-1x) - "d"/"dx"(sin^-1x) = 2*"d"/"dx" cot^-1"a"`
⇒ `1/sqrt(1 - x^2) - 1/sqrt(1 - y^2) * "dy"/"dx"` = 0
⇒ `1/sqrt(1 - y^2) * "dy"/"dx" = 1/sqrt(1 - x^2)`
∴ `"dy"/"dx" = sqrt(1 - y^2)/sqrt(1 - x^2)`
APPEARS IN
RELATED QUESTIONS
दर्शाइए कि f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।
यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।
यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।
मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",", "यदि" x < 0),("a"",", "if" x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि" x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?
`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।
फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।
f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है
k का वह मान, जो f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}` द्वारा परिभाषित फलन को x = 0 पर संतत बना दे,
|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।
cos |x| प्रत्येक स्थान पर अवकलनीय है।
फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।
x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि" x ≠ 4),(0",", "यदि" x = 4):}`
x = 5 पर f(x) = `{{:(3x - 8",", "यदि" x ≤ 5),(2"k"",", "यदि" x > 5):}`
फलन f(x) = `1/(x + 2)` दिया है। संयोजित फलन y = f (f (x)) में असंतत्य के बिंदु ज्ञात कीजिए।
फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ t = `1/(x - 1)` है।
x = 0 पर, f(x) = `{{:(x^2 sin 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
दर्शाइए कि x = 5 पर, f(x) = |x – 5| संतत है, परंतु अवकलनीय नहीं है।
`8^x/x^8`
sinx2 + sin2x + sin2(x2)
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
यदि x = asin2t (1 + cos2t) और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`
यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।
sec(x + y) = xy
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
[–1, 1] में f(x) = log(x2 + 2) – log3
[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`
यदि f(x) = `{{:("m"x + 1",", "यदि" x ≤ pi/2),(sin x + "n"",", "यदि" x > pi/2):}` बिंदु x = `pi/2` पर संतत है तो
यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।
त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।