English

8xx8 - Mathematics (गणित)

Advertisements
Advertisements

Question

`8^x/x^8`

Sum

Solution

माना y = `8^x/x^8`

दोनों पक्षों पर log लेते हुए, हम प्राप्त करते हैं,

log y = `log  8^x/x^8`

⇒ log y = `log 8^x - log x^8`

⇒ log y = x log 8 – 8 log x

दोनों पक्षों में अंतर करना w.r.t. x

⇒ `1/y * "dy"/"dx" = log 8.1 - 8/x`

⇒ `"dy"/"dx" = y [log 8 - 8/x]`

इसलिए, `"dy"/"dx" = 8^x/x^8 [log 8 - 8/x]`

shaalaa.com
सांतत्य तथा अवकलनीयता
  Is there an error in this question or solution?
Chapter 5: सांतत्य और अवकलनीयता - प्रश्नावली [Page 107]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 26 | Page 107

RELATED QUESTIONS

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

(3x2 – 9x + 5)9


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।


यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।


`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।


फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।


k का वह मान, जो f(x) = `{{:(sin  1/x",",  "if"  x ≠ 0),("k"",",  "if"  x = 0):}` द्वारा परिभाषित फलन को x = 0 पर संतत बना दे,


उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx  द्वारा दिया जाने वाला फलन अवकलनीय है,


यदि y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))` है, तो `"dy"/"dx"` = ______ है।


|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।


x = 2 पर (x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदि"  x ≠ 2),(5",", "यदिf"  x = 2):}` 


x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि"  x ≠ 4),(0",", "यदि"  x = 4):}` 


x = 5 पर f(x) = `{{:(3x - 8",",  "यदि"  x ≤ 5),(2"k"",",  "यदि"  x > 5):}` 


x = 0 पर f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "यदि"  0 ≤ x ≤ 1):}` 


एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।


`2^(cos^(2_x)`


`log [log(logx^5)]`


(x + 1)2(x + 2)3(x + 3)4


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


`tan^-1 (secx + tanx), - pi/2 < x < pi/2`


tan–1(x2 + y2) = a


यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`


यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`


[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`


[0, π] में f(x) = sinx – sin2x 


p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",",  "यदि"  x ≤ 1),("q"x + 2",",  "यदि"  x > 1):}` बिंदु x = 1 पर अवकलनीय हो।


यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।


यदि f(x) = `x^2 sin  1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।


यदि f(x) = |cosx – sinx| है तो `"f'"(pi/3)` = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×