English

Tan–1(x2 + y2) = a - Mathematics (गणित)

Advertisements
Advertisements

Question

tan–1(x2 + y2) = a

Sum

Solution

दिया गया है कि: tan–1(x2 + y2) = a

⇒ x2 + y2 = tan a.

दोनों पक्षों में अंतर करना w.r.t. x.

`"d"/"dx"(x^2 + y^2) = "d"/"dx"(tan "a")`

⇒ `2x + 2y * "dy"/"dx"` = 0

⇒ `2y * "dy"/"dx"` = – 2x

⇒ `"dy"/"dx" = (-2x)/(2y) = (-x)/y`

इसलिए, `"dy"/"dx" = (-x)/y`.

shaalaa.com
सांतत्य तथा अवकलनीयता
  Is there an error in this question or solution?
Chapter 5: सांतत्य और अवकलनीयता - प्रश्नावली [Page 109]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 56 | Page 109

RELATED QUESTIONS

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(5x)^(3 cos 2x)`


फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।


`sqrttan sqrt(x)` को x के सापेक्ष अवकलित कीजिए।


यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।


यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।


यदि फलन f(x) = `{{:(sinx/x + cosx",",  "यदि" x ≠ 0),("k"",",  "यदि" x = 0):}` बिंदु x = 0 पर f संतत है, तो k का मान है।


f (x) = tanx द्वारा दिए जाने वाला फलन निम्नलिखित समुच्चय पर असंतत है


यदि u = `sin^-1 ((2x)/(1 + x^2))` और v = `tan^-1 ((2x)/(1 - x^2))`, है, तो `"du"/"dv"` है 


उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।


y = |x – 1| एक संतत फलन है।


|sinx| चर के x के प्रत्येक मान के लिए एक अवकलनीय फलन है।


cos |x| प्रत्येक स्थान पर अवकलनीय है।


फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।


 x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}` 


a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",",  "यदि"  x < 4),("a" + "b"",",  "यदि"  x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि"  x > 4):}`

बिंदु x = 4 पर संतत है।


x = 0 पर, f(x) = `{{:(x^2 sin  1/x",",  "यदि"  x ≠ 0),(0",", "यदि"  x = 0):}`


एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।


`sin sqrt(x) + cos^2 sqrt(x)`


sinn (ax2 + bx + c)


sinx2 + sin2x + sin2(x2)


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


 यदि x = asin2t (1 + cos2t)  और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`


sec(x + y) = xy


यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1 


यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`


[1, 4] में f(x) = `1/(4x - 1)`


वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।


 यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×