Advertisements
Advertisements
Question
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
Solution
दिया गया है, x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
दोनों प्राचलिक फलनों को अलग करना w.r.t. θ
`"dx"/("d"theta) = "e"^theta(1 - 1/theta^2) + (theta + 1/theta)*"e"^theta`
`"dx"/("d"theta) = "e"^theta (1 - 1/theta^2 + theta + 1/theta)`
⇒ `"e"^theta ((theta^2 - 1 + theta^3 + theta)/theta^2)`
= `("e"^theta(theta^3 + theta^2 + theta - 1))/theta^2`
y = `"e"^-theta(theta - 1/theta)`
`"dy"/("d"theta) = "e"^-theta(1 + 1/theta^2) + (theta - 1/theta) * (-"e"^-theta)`
`"dy"/("d"theta) = "e"^-theta (1 + 1/theta^2 - theta + 1/theta)`
⇒ `"e"^-theta ((theta^2 + 1 - theta^3 + theta)/theta^2)`
= `"e"^-theta ((-theta^3 + theta^2 + theta + 1))/theta^2`
∴ `"dy"/"dx" = (("dy")/("d"theta))/(("d"x)/("d"theta))`
= `("e"^-theta ((-theta^3 + theta^2 + theta + 1)/theta^2))/("e"^theta ((theta^3 + theta^2 + theta + 1)/theta^2))`
= `"e"^(-2theta) ((-theta^3 + theta^2 + theta + 1)/(theta^3 + theta^2 + theta - 1))`
अत: `"dy"/"dx" = "e"^(-2theta) ((-theta^3 + theta^2 + theta + 1)/(theta^3 + theta^2 + theta - 1))`.
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin-1 `(x sqrtx), 0 ≤ x ≤ 1`
यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।
अचर k का मान ज्ञात कीजिए ताकि फलन f ] x = 0 पर संतत हो, जहाँ f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}` है।
फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।
यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।
मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",", "यदि" x < 0),("a"",", "if" x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि" x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।
x = a पर f (x) संततता के लिए? `lim_(x -> "a"^+) "f"(x)` और `lim_(x -> "a"^-) "f"(x)` में से प्रत्येक f (a) के बराबर होता है।
x = a पर f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "यदि" x ≠ 0),(0",", "यदि" x = "a"):}`
a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",", "यदि" x < 4),("a" + "b"",", "यदि" x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि" x > 4):}`
बिंदु x = 4 पर संतत है।
दर्शाइए कि फलन f(x) = |sin x + cos x| बिंदु x = π पर संतत है।
x = 0 पर, f(x) = `{{:(x^2 sin 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।
`2^(cos^(2_x)`
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`
tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.
`sin xy + x/y` = x2 – y
tan–1(x2 + y2) = a
यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
यदि y = tan–1x, तो केवल y के पदों में `("d"^2y)/("dx"^2)` ज्ञात कीजिए।
[1, 5] में f(x) = `sqrt(25 - x^2)`
p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",", "यदि" x ≤ 1),("q"x + 2",", "यदि" x > 1):}` बिंदु x = 1 पर अवकलनीय हो।
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`
यदि f(x) = `x^2 sin 1/x` जहाँ x ≠ 0 तो x = 0 पर फलन f का मान निम्नलिखित होगा यदि यह फलन x = 0 संतत है।
यदि y = `sqrt(sinx + y)` है, तो `"dy"/"dx"` बराबर है।
cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।
यदि f.g बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।