English

F(x) = ,if,if,if{2x+3, if -3≤x<-2x+1, if -2≤x<0x+2, if 0≤x≤1 द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।

Sum

Solution

f(x) की अवकलनीयता के संदेहास्पद बिंदु केवल x = – 2 और x = 0 हैं।

x = – 2 पर अवकलनीयता के लिए:

अब Lf'(–2) = `lim_("h" -> 0) ("f"(-2 + "h")  "f"(-2))/"h"`

= `lim_("h" -> 0^-) (2(-2 + "h") + 3 - (-2 + 1))/"h"`

= `lim_("h" -> 0^-)  (2"h")/"h"`

= `lim_("h" -> 0^-) 2`

= 2

तथा Rf'(–2) = `lim_("h" -> 0^+) ("f"(-2 + "h") - "f"(-2))/"h"`

= `lim_("h" ->0^+) (-2 + "h" + 1 - (-2 + 1))/"h"`

= `lim_("h" ->0^+) ("h" - 1 - (-1))/"h"`

= `lim_("h" -> 0^+) "h"/"h"`

= 1

इस प्रकार, R f′(–2) ≠ Lf′(–2).

अत:, x = – 2 पर, f अवकलनीय नहीं है।

इसी प्रकार, x = 0 पर फलन की अवकलनीयता के लिए, हमें

Lf'(0) = `lim_("h" -> 0^-) ("f"(0 + "h") - "f"(0))/"h"`

= `lim_("h" -> 0^-) (0 + "h" + 1 - (0 + 2))/"h"`

= `lim_("h" -> 0^-) ("h" - 1)/"h"`

= `lim_("h" ->0^-) (1 - 1/"h")`

जिसका अस्तित्व नहीं है।

अतः, x = 0 पर फलन अवकलनीय नहीं है।

shaalaa.com
सांतत्य तथा अवकलनीयता
  Is there an error in this question or solution?
Chapter 5: सांतत्य और अवकलनीयता - हल उदाहरण [Page 98]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 5 सांतत्य और अवकलनीयता
हल उदाहरण | Q 22 | Page 98

RELATED QUESTIONS

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin-1 `(x sqrtx), 0 ≤ x ≤ 1`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।


यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`


यदि y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)` है, तो `("d"y)/("d"x)` ज्ञात कीजिए।


यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।


`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।


फलन f(x) = |x| + |x – 1|


x = 1 पर f(x) = |x| + |x − 1|


दर्शाइए कि फलन  f(x) = |sin x + cos x| बिंदु x = π पर संतत है।


x = 2 पर, f(x) = `{{:(x[x]",",  "यदि"  0 ≤ x < 2),((x - 1)x",",  "यदि"  2 ≤ x < 3):}`  


x = 2 पर, f(x) = `{{:(1 + x",",  "यदि"  x ≤ 2),(5 - x",",  "यदि"  x > 2):}` 


एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।


`sin sqrt(x) + cos^2 sqrt(x)`


`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`


यदि x sin (a + y) + sin a cos (a + y) = 0 तो सिद्ध कीजिए कि `"dy"/"dx" = (sin^2("a" + y))/sin"a"`


[–1, 1] में f(x) = log(x2 + 2) – log3 


[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`


[– 2, 2] में f(x) = `sqrt(4 - x^2)` 


[1, 5] में f(x) = `sqrt(25 - x^2)` 


बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।


फलन f(x) = `"e"^|x|` 


मान लीजिए f(x) = |sin x| है, तब


 यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।


 यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।


x3 के सापेक्ष  x2 अवकलज ______ है।


यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×