Advertisements
Advertisements
Question
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।
Solution
f(x) की अवकलनीयता के संदेहास्पद बिंदु केवल x = – 2 और x = 0 हैं।
x = – 2 पर अवकलनीयता के लिए:
अब Lf'(–2) = `lim_("h" -> 0) ("f"(-2 + "h") "f"(-2))/"h"`
= `lim_("h" -> 0^-) (2(-2 + "h") + 3 - (-2 + 1))/"h"`
= `lim_("h" -> 0^-) (2"h")/"h"`
= `lim_("h" -> 0^-) 2`
= 2
तथा Rf'(–2) = `lim_("h" -> 0^+) ("f"(-2 + "h") - "f"(-2))/"h"`
= `lim_("h" ->0^+) (-2 + "h" + 1 - (-2 + 1))/"h"`
= `lim_("h" ->0^+) ("h" - 1 - (-1))/"h"`
= `lim_("h" -> 0^+) "h"/"h"`
= 1
इस प्रकार, R f′(–2) ≠ Lf′(–2).
अत:, x = – 2 पर, f अवकलनीय नहीं है।
इसी प्रकार, x = 0 पर फलन की अवकलनीयता के लिए, हमें
Lf'(0) = `lim_("h" -> 0^-) ("f"(0 + "h") - "f"(0))/"h"`
= `lim_("h" -> 0^-) (0 + "h" + 1 - (0 + 2))/"h"`
= `lim_("h" -> 0^-) ("h" - 1)/"h"`
= `lim_("h" ->0^-) (1 - 1/"h")`
जिसका अस्तित्व नहीं है।
अतः, x = 0 पर फलन अवकलनीय नहीं है।
APPEARS IN
RELATED QUESTIONS
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin-1 `(x sqrtx), 0 ≤ x ≤ 1`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
cos (acos x + b sin x), किन्हीं अचर a तथा b के लिए।
यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`
यदि y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)` है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।
`cos^-1(2xsqrt(1 - x^2))` के सापेक्ष `tan^-1 (sqrt(1 - x^2)/x)` को अवकलित कीजिए, जहाँ `x ∈ (1/sqrt(2), 1)` है।
फलन f(x) = |x| + |x – 1|
x = 1 पर f(x) = |x| + |x − 1|
दर्शाइए कि फलन f(x) = |sin x + cos x| बिंदु x = π पर संतत है।
x = 2 पर, f(x) = `{{:(x[x]",", "यदि" 0 ≤ x < 2),((x - 1)x",", "यदि" 2 ≤ x < 3):}`
x = 2 पर, f(x) = `{{:(1 + x",", "यदि" x ≤ 2),(5 - x",", "यदि" x > 2):}`
एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।
`sin sqrt(x) + cos^2 sqrt(x)`
`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
यदि x sin (a + y) + sin a cos (a + y) = 0 तो सिद्ध कीजिए कि `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
[–1, 1] में f(x) = log(x2 + 2) – log3
[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`
[– 2, 2] में f(x) = `sqrt(4 - x^2)`
[1, 5] में f(x) = `sqrt(25 - x^2)`
बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।
फलन f(x) = `"e"^|x|`
मान लीजिए f(x) = |sin x| है, तब
यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।
यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।
x3 के सापेक्ष x2 अवकलज ______ है।
यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।