मराठी

F(x) = ,if,if,if{2x+3, if -3≤x<-2x+1, if -2≤x<0x+2, if 0≤x≤1 द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।

बेरीज

उत्तर

f(x) की अवकलनीयता के संदेहास्पद बिंदु केवल x = – 2 और x = 0 हैं।

x = – 2 पर अवकलनीयता के लिए:

अब Lf'(–2) = `lim_("h" -> 0) ("f"(-2 + "h")  "f"(-2))/"h"`

= `lim_("h" -> 0^-) (2(-2 + "h") + 3 - (-2 + 1))/"h"`

= `lim_("h" -> 0^-)  (2"h")/"h"`

= `lim_("h" -> 0^-) 2`

= 2

तथा Rf'(–2) = `lim_("h" -> 0^+) ("f"(-2 + "h") - "f"(-2))/"h"`

= `lim_("h" ->0^+) (-2 + "h" + 1 - (-2 + 1))/"h"`

= `lim_("h" ->0^+) ("h" - 1 - (-1))/"h"`

= `lim_("h" -> 0^+) "h"/"h"`

= 1

इस प्रकार, R f′(–2) ≠ Lf′(–2).

अत:, x = – 2 पर, f अवकलनीय नहीं है।

इसी प्रकार, x = 0 पर फलन की अवकलनीयता के लिए, हमें

Lf'(0) = `lim_("h" -> 0^-) ("f"(0 + "h") - "f"(0))/"h"`

= `lim_("h" -> 0^-) (0 + "h" + 1 - (0 + 2))/"h"`

= `lim_("h" -> 0^-) ("h" - 1)/"h"`

= `lim_("h" ->0^-) (1 - 1/"h")`

जिसका अस्तित्व नहीं है।

अतः, x = 0 पर फलन अवकलनीय नहीं है।

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - हल उदाहरण [पृष्ठ ९८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
हल उदाहरण | Q 22 | पृष्ठ ९८

संबंधित प्रश्‍न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin3 x + cos6 x


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`x^(x^2-3) + (x - 3)^(x^2), x > 3` के लिए।


यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।


मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।


यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।


यदि xy = ex–y है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = logx/(1 + logx)^2`


यदि फलन f(x) = `{{:(sinx/x + cosx",",  "यदि" x ≠ 0),("k"",",  "यदि" x = 0):}` बिंदु x = 0 पर f संतत है, तो k का मान है।


उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,


x के सापेक्ष log10 का अवकलज ______ है।


x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि"  x ≠ 0),(5",", "यदि"  x = 0):}` 


x = 2 पर (x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदि"  x ≠ 2),(5",", "यदिf"  x = 2):}` 


x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि"  x ≠ 4),(0",", "यदि"  x = 4):}` 


a और b के मान ज्ञात कीजिए जिसके लिये दिया हुआ फलन f(x) = `{{:((x - 4)/(|x - 4|) + "a"",",  "यदि"  x < 4),("a" + "b"",",  "यदि"  x = 4),((x - 4)/(|x - 4|) + "b"",", "यदि"  x > 4):}`

बिंदु x = 4 पर संतत है।


sinx2 + sin2x + sin2(x2)


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


 यदि x = asin2t (1 + cos2t)  और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`


यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।


यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`


यदि y = `(cos x)^((cos x)^((cosx)....oo)` तो सिद्ध कीजिए कि `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`


[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`


[– 2, 2] में f(x) = `sqrt(4 - x^2)` 


f(x) = `{{:(x^2 + 1",",  "यदि"  0 ≤ x ≤ 1),(3 - x",",  "यदि"  1 ≤ x ≤ 2):}` द्वारा दिए जाने वाले फलन पर रोले के प्रमेय की अनुप्रयोगता पर चर्चा कीजिए।


[1, 5] में f(x) = `sqrt(25 - x^2)` 


p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",",  "यदि"  x ≤ 1),("q"x + 2",",  "यदि"  x > 1):}` बिंदु x = 1 पर अवकलनीय हो।


 यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`


बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।


त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×