Advertisements
Advertisements
प्रश्न
[– 2, 2] में f(x) = `sqrt(4 - x^2)`
उत्तर
हमारे पास है, `sqrt(4 - x^2) = (4 - x^2)^(1/2)`
क्योंकि (4 – x2) और वर्गमूल फलन अपने क्षेत्र में संतत और अवकलनीय हैं, दिया गया फलन f(x) भी [-2, 2] में संतत और अवकलनीय है।
साथ ही f(–2) = f(2) = 0
अतः रोले के प्रमेय की शर्तें संतुष्ट हैं।
अत: एक वास्तविक संख्या c ∈ (–2, 2) का अस्तित्व इस प्रकार है कि f'(c) = 0 है।
अब f'(x) = `1/2(4 - x^2)^((-1)/2)(-2x)`
= `- x/sqrt(4 - x^2)`
तो, f'(c) = 0
⇒ `"c"/sqrt(4 - "c"^2)` = 0
⇒ c = 0 ∈ (–2, 2)
अत: रोले की प्रमेय है।
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
(3x2 – 9x + 5)9
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
sin3 x + cos6 x
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(cos^-1 x/2)/(sqrt(2x + 7))`, - 2 < x < 2`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`
मान लीजिए कि सभी x ∈ R के लिए, f(x) = x|x| तो x = 0 पर, f (x) की अवकलजता की चर्चा कीजिए।
यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।
फलन f(x) = [x], जहाँ [x] महत्तम पूर्णांक फलन को व्यक्त करता है, निम्नलिखित पर संतत है।
उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx द्वारा दिया जाने वाला फलन अवकलनीय है,
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "यदि" x ≠ 0),(1/2",", "यदि" x = 0):}`
x = 2 पर, f(x) = `{{:(x[x]",", "यदि" 0 ≤ x < 2),((x - 1)x",", "यदि" 2 ≤ x < 3):}`
`cos(tan sqrt(x + 1))`
`sin^-1 1/sqrt(x + 1)`
(x + 1)2(x + 2)3(x + 3)4
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
`sin xy + x/y` = x2 – y
tan–1(x2 + y2) = a
यदि x = `"e"^(x/y)` तो सिद्ध कीजिए कि `"dy"/"dx" = (x - y)/(xlogx)`
यदि x sin (a + y) + sin a cos (a + y) = 0 तो सिद्ध कीजिए कि `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
[–1, 1] में f(x) = log(x2 + 2) – log3
रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0
यदि y = `x^tanx + sqrt((x^2 + 1)/2)` है, तो `"dy"/"dx"` ज्ञात कीजिए।
यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।
फलन f(x) = `x + 1/x`, x ∈ [1, 3] के लिए, माध्य मान प्रमेय में c का मान है।
दो संतत फलनों का संयोजन एक संतत फलन होता है।
यदि f.g बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।