मराठी

X = 2 पर, f(x) = ,यदि,यदि{x[x], यदि 0≤x<2(x-1)x, यदि 2≤x<3 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

x = 2 पर, f(x) = `{{:(x[x]",",  "यदि"  0 ≤ x < 2),((x - 1)x",",  "यदि"  2 ≤ x < 3):}`  

बेरीज

उत्तर

हम जानते हैं कि एक फलन f अपने प्रांत में एक बिंदु ‘a’ पर अवकलनीय होता है यदि

Lf'(x) = Rf'(c)

जहाँ Lf'(c) = `lim_("h" -> 0) ("f"("a" - "h") - "f"("a"))/(-"h")` और Rf'(c) = `lim_("h" -> 0)  ("f"("a" + "h") - "f"("a"))/"h"`

यहाँ, x = 2 पर f(x) = `{{:(x[x]",",  "यदि"  0 ≤ x < 2),((x - 1)x",",  "यदि"  2 ≤ x < 3):}`  

Lf'(c) = `lim_("h" -> 0) ("f"(2 - "h") - "f"(2))/(-"h")`

= `lim_("h" -> 0) ((2 - "h")[2 - "h"] - (2 - 1)2)/(-"h")`

= `lim_("h" -> 0) ((2 - "h") * 1 - 2)/(-"h")`  ....[∵ [2 – h] = 1]

= `lim_("h" -> 0) (2 - "h" - 2)/(-"h")`

= 1

Rf'(c) = `lim_("h" -> 0) ("f"(2 + "h") - "f"(2))/"h"`

= `lim_("h" -> 0) ((2 + "h" - 1)(2 + "h") - (2 - 1)*2)/"h"`

= `lim_("h" -> 0) ((1 + "h")(2 + "h") - 2)/"h"`

= `lim_("h" -> 0) (2 - "h" + 2"h" + "h"^2 - 2)/"h"`

= `lim_("h" -> 0) (3"h" + "h"^2)/"h"`

= `lim_("h" -> 0) ("h"(3 + "h"))/"h"`

= 3

Lf"(2) ≠ Rf'(2)

इसलिए, x = 2 पर f(x) अभेद्य नहीं है।

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 20 | पृष्ठ १०७

संबंधित प्रश्‍न

यदि cos y = x cos (a + y) तथा cos a ≠ ±1 है तो सिद्ध कीजिए कि `dy/dx = (cos^2 (a + y))/(sin a)`


अचर k का मान ज्ञात कीजिए ताकि फलन f ] x = 0 पर संतत हो, जहाँ f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}` है।


`[0, pi/2]` में फलन f(x) = sin 2x  के लिए रोले के प्रमेय का सत्यापन कीजिए।


 यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।


उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,


x के सापेक्ष log10 का अवकलज ______ है।


x = 1 पर f(x) = |x| + |x − 1|


फलन f(x) = `1/(x + 2)` दिया है। संयोजित फलन y = f (f (x)) में असंतत्य के बिंदु ज्ञात कीजिए।


फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ  t = `1/(x - 1)` है।


x = 2 पर, f(x) = `{{:(1 + x",",  "यदि"  x ≤ 2),(5 - x",",  "यदि"  x > 2):}` 


एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।


`8^x/x^8`


`log (x + sqrt(x^2 + "a"))`


(sin x)cosx


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`


यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।


sinx के सापेक्ष `x/sinx`को अवकलित कीजिए।


tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.


यदि y = tan–1x, तो केवल y के पदों में `("d"^2y)/("dx"^2)` ज्ञात कीजिए।


`[0, pi/2]` esa f(x) = `sin^4x + cos^4x` 


[0, π] में f(x) = sinx – sin2x 


[1, 5] में f(x) = `sqrt(25 - x^2)` 


 यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0


बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।


मान लीजिए f(x) = |sin x| है, तब


 यदि x = t2 और y = t3 है, तो `("d"^2"y")/("dx"^2)` है।


x3 के सापेक्ष  x2 अवकलज ______ है।


[0, 2] में फलन f(x) = |x – 1| के लिए, रोले का प्रमेय प्रयुक्त है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×