Advertisements
Advertisements
प्रश्न
`[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
उत्तर
हमारे पास है, `[0, pi/2]` esa f(x) = `sin^4x + cos^4x`
हम जानते हैं कि sin x और cos x स्थितियां और अवकलनीय हैं
∴ sin4x और cos4x और इसलिए sin4x + cos4x संतत और अवकलनीय हैं
अब f(0) = 0 + 1 = 1 और `"f"(pi/2)` = 1 + 0 = 1
⇒ f(0) = `"f"(pi/2)`
अतः रोले के प्रमेय की शर्तें संतुष्ट हैं।
इसलिए, कम से कम एक `"c" ∈ (0, pi/2)` ऐसा मौजूद है कि f'(c) = 0
∴ `4sin^3"c" cos "c" - 4cos^3"c" sin"c"` = 0
⇒ `4sin"c" cos"c" (sin^2"c" - cos^2"c")` = 0
⇒ `4sin"c" cos"c"(-cos 2"c")` = 0
⇒ `-2 sin 2"c" * cos 2"c"` = 0
⇒ sin 4c = 0
⇒ 4c = π
⇒ c = `pi/4 ∈ (0, pi/2)`.
इसलिए, रोले की प्रमेय की पुष्टि हो गई है।
APPEARS IN
संबंधित प्रश्न
क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`
दर्शाइए कि f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` द्वारा परिभाषित फलन f, x = 0 पर संतत है।
यदि y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)` है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।
यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।
[3, 5] में फलन f (x) = (x – 3) (x – 6) (x – 9 के लिए माध्यमान प्रमेय का सत्यापन कीजिए।
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}` द्वारा परिभाषित फलन की अवकलनीयता की जाँच कीजिए।
उन बिंदुओं का सम्मुच्चय, जहाँ f(x) = |x – 3| cosx द्वारा दिया जाने वाला फलन अवकलनीय है,
x के सापेक्ष sec (tan–1x) का अवकल गुणांक है
x के सापेक्ष log10 का अवकलज ______ है।
cos x के सापेक्ष sin x का अवकलज ______ है।
x = 0 पर f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = 5 पर f(x) = `{{:(3x - 8",", "यदि" x ≤ 5),(2"k"",", "यदि" x > 5):}`
x = 0 पर f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "यदि" 0 ≤ x ≤ 1):}`
x = 0 पर f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "यदि" x ≠ 0),(1/2",", "यदि" x = 0):}`
एक फलन f: R → R सभी x, y ∈R, f (x) ≠ 0 के लिए समीकरण f (x +y)=f (x) f (y) को संतुष्ट करता है। मान लीजिए कि यह फलन x = 0 पर अवकलनीय है तथा f ′ (0) = 2 है। सिद्ध कीजिए कि f ′(x) = 2 f (x) है।
`8^x/x^8`
`cos(tan sqrt(x + 1))`
sinmx . cosnx
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.
[– 2, 2] में f(x) = `sqrt(4 - x^2)`
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`
फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।
यदि f(x) = |cosx| तो `"f'"(pi/4)` = ______
यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।
यदि f.g बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।