Advertisements
Advertisements
प्रश्न
फलन f(x) = cot x निम्नलिखित समुच्चय पर असंतत है।
पर्याय
{x = nπ : n ∈ Z}
{x = 2nπ : n ∈ Z}
`{x = (2"n" + 1)pi/2 ; "n" ∈ "Z"}`
`{x = ("n"pi)/2 ; "n" ∈ "Z"}`
उत्तर
सही उत्तर {x = nπ : n ∈ Z} है।
व्याख्या:
यह देखते हुए: f(x) = cot x
⇒ f(x) = `cosx/sinx`
हम जानते हैं कि t sin x = 0 यदि f(x) बंद है।
∴ यदि sin x = 0
∴ x = nπ, n ∈ nπ.
तो, दिया गया फलन f(x) समूह {x = nπ : n ∈ Z} पर बंद है।
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
xx + xa + ax + aa, किसी नियत a > 0 तथा x > 0 के लिए।
यदि f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` पर संतत है, तो k का मान ज्ञात कीजिए।
यदि ex + ey = ex+y दिया है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = -"e"^(y - x)` है।
मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",", "यदि" x < 0),("a"",", "if" x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि" x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?
उन बिंदुओं की संख्या, जहाँ फलन f(x) = `1/(log|x|)` असंतत है, ______ है।
y = |x – 1| एक संतत फलन है।
एक संतत फलन में कुछ ऐसे बिंदु हो सकते हैं जहाँ सीमाओं का अस्तित्व न हों।
x = 2 पर f(x) = `{{:(3x + 5",", "यदि" x ≥ 2),(x^2",", "यदि" x < 2):}`
x = 2 पर (x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "यदि" x ≠ 2),(5",", "यदिf" x = 2):}`
`2^(cos^(2_x)`
sinx2 + sin2x + sin2(x2)
`sin^-1 1/sqrt(x + 1)`
(x + 1)2(x + 2)3(x + 3)4
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।
tan–1x के सापेक्ष `tan^-1 ((sqrt(1 + x^2) - 1)/x)` को अवकलित कीजिए, जब x ≠ 0.
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
यदि yx = ey – x तो सिद्ध कीजिए कि `"dy"/"dx" = (1 + log y)^2/logy`
[–1, 1] में f(x) = log(x2 + 2) – log3
[–3, 0] में f(x) = `x(x + 3)e^((–x)/2)`
रोले के प्रमेय का प्रयोग करते हुए वक् y = x (x – 4), x Î [0, 4] पर वह बिंदु ज्ञात कीजिए जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
[0, π] में f(x) = sinx – sin2x
यदि x = sint और y = sin pt है तो सिद्ध कीजिए कि `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0 है।
यदि y = `log ((1 - x^2)/(1 + x^2))` है, तो `"dy"/"dx"` बराबर है।
यदि f.g बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।