Advertisements
Advertisements
प्रश्न
यदि ex + ey = ex+y दिया है, तो सिद्ध कीजिए कि `("d"y)/("d"x) = -"e"^(y - x)` है।
उत्तर
ex + ey = ex+y दिया है।
दोनों पक्षों को x के सापेक्ष अवकलित करने पर
`"e"^x + "e"^y ("d"y)/("d"x) = "e"^(x + y) (1 + ("d"y)/("d"x))`
या `("e"^y - "e"^(x + y)) ("d"y)/("d"x) = "e"^(x + y) - "e"^x`
जिसके फलस्वरूप `("d"y)/("d"x) = ("e"^(x + y) - "e"^x)/("e"^y - "e"^(x + y))`
= `("e"^x + "e"^y - "e"^x)/("e"^y - "e"^x - "e"^y)`
= –ey–x.
APPEARS IN
संबंधित प्रश्न
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`
यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।
यदि y = tan(x + y) है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)` है, तो `("d"y)/("d"x)` ज्ञात कीजिए।
यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।
यदि y = tanx + secx है, तो सिद्ध कीजिए कि `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2` है।
उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,
फलन f (x) = x (x – 2), x ∈ [1, 2] के लिए, माध्य मान प्रमेय में c का मान है
cos x के सापेक्ष sin x का अवकलज ______ है।
x = 0 पर f(x) = `{{:(|x|cos 1/x",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}`
x = a पर f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "यदि" x ≠ 0),(0",", "यदि" x = "a"):}`
x = 1 पर f(x) = `{{:(x^2/2",", "यदि" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "यदि" 1 < x ≤ 2):}`
दर्शाइए कि फलन f(x) = |sin x + cos x| बिंदु x = π पर संतत है।
(sin x)cosx
(x + 1)2(x + 2)3(x + 3)4
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` तथा `"a"/"b" tan x > -1`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
यदि x = asin2t (1 + cos2t) और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`
यदि x = 3sint – sin 3t और y = 3cost – cos 3t तो t = `pi/3` पर `"dy"/"dx"` ज्ञात कीजिए।
यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1
[0, 1] में f(x) = x(x – 1)2
[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
माध्य मान प्रमेय का प्रयोग करते हुए, सिद्ध कीजिए कि वक्र y = 2x2 – 5x + 3 पर एक ऐसा बिंदु है जो A(1, 0) और B (2, 1) बिंदुओं के बीच स्थित है तथा उस पर खींची गयी स्पर्श रेखा जीवा AB के समांतर है। साथ ही, वह बिंदु भी ज्ञात कीजिए।
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0
बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।
cos–1(2x2 – 1) के सापेक्ष cos–1x का अवकलज है।
वक् `sqrt(x) + sqrt(y)` = 1 के लिए, `(1/4, 1/4)` पर `"dy"/"dx"` ______