Advertisements
Advertisements
प्रश्न
यदि x = asin2t (1 + cos2t) और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`
उत्तर
दिया गया है: x = asin2t (1 + cos 2t) और y = bcos2t (1 – cos 2t).
दोनों प्राचलिक फलनों को अलग करना w.r.t. t
`"dx"/"dt" = "a"[sin2"t" * "d"/"dt" (1 + cos 2"t") + (1 + cos 2"t") * "d"/"dt" sin 2"t"]`
= a[sin 2t .(– sin 2t) + (1 + cos 2t)(cos 2t).2]
= a[2(cos22t – sin22t + 2 cos 2t]
= a[2 cos22t – sin22t) + 2 cos 2t]
= a[2 cos 4t + 2 cos 2t] ....[∵ cos 2x = cos2x – sin2x]
= 2a[cos 4t + cos 2t]
y = b cos 2t (1 – cos 2t)
`"dy"/"dx" = "b"[cos 2"t" * "d"/"dt" (1 - cos 2"t") + (1 - cos 2"t") * "d"/"dt" (cos 2"t")]`
= b[cos 2t . sin 2t.2 + (1 – cos 2t).(– son 2t).2
= b[sin 4t – 2 sin 2t - 2 sin 2t + 2 sin 2t cos 2t]
= b[2 sin 4t – 2 sin 2t]
= 2b (sin 4t – sin 2t)
∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`
= `(2"b"[sin 4"t" - sin2"t"])/(2"a"[cos 4"t" + cos 2"t"])`
= `"b"/"a" [(sin 4"t" - sin 2"t")/(cos 4"t" + cos 2"t")]`
t = `pi/4` रखिये
∴ x = `pi/4` पर;`("dy"/"dx") = "b"/"a" [(sin 4(pi/4) - sin 2* (pi/4))/(cos 4(pi/4) + cos 2*(pi/4))]`
= `"b"/"a" [(sin pi - sin pi/2)/(cos pi + cos pi/2)]`
= `"b"/"a" [(0 - 1)/(-1 + 0)]`
= `"b"/"a"((-1)/(-1))`
= `"b"/'a"`
इसलिए, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`
APPEARS IN
संबंधित प्रश्न
क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`
प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-
`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`
फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।
यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।
यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।
यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।
यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।
`[0, pi/2]` में फलन f(x) = sin 2x के लिए रोले के प्रमेय का सत्यापन कीजिए।
यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।
दर्शाइए कि (x) = f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "यदि" x ≠ 0),(0",", "यदि" x = 0):}` द्वारा दिया जाने वाला फलन f बिंदु x = 0 पर असंतत है।
मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",", "यदि" x < 0),("a"",", "if" x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि" x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?
उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,
x के सापेक्ष log10 का अवकलज ______ है।
फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।
x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि" x ≠ 0),(5",", "यदि" x = 0):}`
x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि" x ≠ 4),(0",", "यदि" x = 4):}`
x = a पर f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "यदि" x ≠ 0),(0",", "यदि" x = "a"):}`
x = 0 पर f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "यदि" 0 ≤ x ≤ 1):}`
फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ t = `1/(x - 1)` है।
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
sec(x + y) = xy
(x2 + y2)2 = xy
यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
[–1, 1] में f(x) = log(x2 + 2) – log3
f(x) = `{{:(x^2 + 1",", "यदि" 0 ≤ x ≤ 1),(3 - x",", "यदि" 1 ≤ x ≤ 2):}` द्वारा दिए जाने वाले फलन पर रोले के प्रमेय की अनुप्रयोगता पर चर्चा कीजिए।
[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।
यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`
फलन f(x) = `"e"^|x|`
यदि f.g बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।