मराठी

यदि x = asin2t (1 + cos2t) और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = π4 पर;dydxba(dydx)=ba - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

 यदि x = asin2t (1 + cos2t)  और y = b cos2t (1–cos2t) तो दर्शाइए कि, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`

बेरीज

उत्तर

दिया गया है: x = asin2t (1 + cos 2t) और y = bcos2t (1 – cos 2t).

दोनों प्राचलिक फलनों को अलग करना w.r.t. t

`"dx"/"dt" = "a"[sin2"t" * "d"/"dt" (1 + cos 2"t") + (1 + cos 2"t") * "d"/"dt" sin 2"t"]`

= a[sin 2t .(– sin 2t) + (1 + cos 2t)(cos 2t).2]

= a[2(cos22t – sin22t + 2 cos 2t]

= a[2 cos22t – sin22t) + 2 cos 2t]

= a[2 cos 4t + 2 cos 2t]  ....[∵ cos 2x = cos2x – sin2x]

= 2a[cos 4t + cos 2t]

y = b cos 2t (1 – cos 2t)

`"dy"/"dx" = "b"[cos 2"t" * "d"/"dt" (1 - cos 2"t") + (1 - cos 2"t") * "d"/"dt" (cos 2"t")]`

= b[cos 2t . sin 2t.2 + (1 – cos 2t).(– son 2t).2

= b[sin 4t – 2 sin 2t - 2 sin 2t + 2 sin 2t cos 2t]

= b[2 sin 4t – 2 sin 2t]

= 2b (sin 4t – sin 2t)

∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`

= `(2"b"[sin 4"t" - sin2"t"])/(2"a"[cos 4"t" + cos 2"t"])`

= `"b"/"a" [(sin 4"t" - sin 2"t")/(cos 4"t" + cos 2"t")]`

t = `pi/4` रखिये

∴ x = `pi/4` पर;`("dy"/"dx") = "b"/"a" [(sin 4(pi/4) - sin 2* (pi/4))/(cos 4(pi/4) + cos 2*(pi/4))]`

= `"b"/"a" [(sin pi - sin  pi/2)/(cos pi + cos  pi/2)]`

= `"b"/"a" [(0 - 1)/(-1 + 0)]`

= `"b"/"a"((-1)/(-1))`

= `"b"/'a"`

इसलिए, x = `pi/4` पर;`("dy"/"dx") = "b"/"a"`

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 50 | पृष्ठ १०८

संबंधित प्रश्‍न

क्या f(x) = x2 - sin x + 5 द्वारा परिभाषित फलन x = π पर संतत है?


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`, 0 < x < `pi/2`


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

`(sin x- cos x)^(sin x – cos x) π/4 < x < (3π)/4`


फलन f(x) = sin x . cos x के सांतत्य की चर्चा कीजिए।


यदि y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` और 0 < x < 1 है, तो `("d"y)/(dx)` ज्ञात कीजिए।


यदि x = a sec3θ और y = a tan3θ है, तो θ = `pi/3` पर `("d"y)/("d"x)` ज्ञात कीजिए।


यदि f(x) = |cos x|, है, तो f ′ `((3pi)/4)` ज्ञात कीजिए।


यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।


`[0, pi/2]` में फलन f(x) = sin 2x  के लिए रोले के प्रमेय का सत्यापन कीजिए।


 यदि f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` है, तो `"f"(pi/4)` का ऐसा मान ज्ञात कीजिए कि x = `pi/4` पर f (x) संतत बन जाए।


दर्शाइए कि (x) = f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "यदि"  x ≠ 0),(0",",  "यदि"  x = 0):}` द्वारा दिया जाने वाला फलन f बिंदु  x = 0 पर असंतत है।


मान लीजिए कि f(x) = `{{:((1 - cos 4x)/x^2",",  "यदि"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "यदि"  x > 0):}` है। a के किस मान के लिए x = 0 पर f संतत है?


उन बिंदुओं की संख्या जिन पर फलन f(x) = `1/(x - [x])` संतत नहीं है,


x के सापेक्ष log10 का अवकलज ______ है।


फलन f(x) = x3 + 2x2 – 1 को x = 1 पर संततता की जाँच कौजिए।


x=0 पर f(x) = `{{:((1 - cos 2x)/x^2",", "यदि"  x ≠ 0),(5",", "यदि"  x = 0):}` 


x = 4 पर f(x) = `{{:(|x - 4|/(2(x - 4))",", "यदि"  x ≠ 4),(0",", "यदि"  x = 4):}` 


 x = a पर  f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "यदि"  x ≠ 0),(0",",  "यदि"  x = "a"):}` 


x = 0 पर f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "यदि" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "यदि"  0 ≤ x ≤ 1):}` 


फलन f(t) = `1/("t"^2 + "t" - 2)`, की असंततता के सभी बिंदु ज्ञात कीजिए, जहाँ  t = `1/(x - 1)` है।


`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`


sec(x + y) = xy


(x2 + y2)2 = xy


यदि `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)` तो सिद्ध कीजिए कि `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`


[–1, 1] में f(x) = log(x2 + 2) – log3 


f(x) = `{{:(x^2 + 1",",  "यदि"  0 ≤ x ≤ 1),(3 - x",",  "यदि"  1 ≤ x ≤ 2):}` द्वारा दिए जाने वाले फलन पर रोले के प्रमेय की अनुप्रयोगता पर चर्चा कीजिए।


[0, 2π] में वक् y = (cosx – 1) पर उन बिंदुओं को ज्ञात कीजिए, जहाँ स्पर्श रेखा x-अक्ष के समांतर है।


 यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`


फलन f(x) = `"e"^|x|` 


यदि f.g  बिंदु x = a पर संतत है, तो f और g बिंदु x = a पर पृथक-पृथक रूप से संतत होते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×