मराठी

Sec(x + y) = xy - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

sec(x + y) = xy

बेरीज

उत्तर

दिया गया है कि: sec(x + y) = xy

दोनों पक्षों में अंतर करना w.r.t. x

`"d"/"dx" sec(x + y) = "d"/"dx"(xy)`

⇒ `sec(x + y) tan(x + y) * "d"/"dx"(x + y) = x*"dy"/"dx" + y*1`

⇒ `sec(x + y)*tan(x + y) (1 + "dy"/"dx") = x*"dy"/"dx" + y`

⇒ `sec(x + y)*tan(x + y) + sec(x + y)*"dy"/"dx"` = y – sec(x + y).tan(x + y)

⇒ `[sec(x + y)* tan(x + y) - x] "dy"/"dx"` = = y – sec(x + y).tan(x + y)

⇒ `"dy"/"dx" = (y - sec(x + y)*tan(x + y))/(sec(x + y)*tan(x + y) - x)`

इसलिए, `"dy"/"dx" = (y - sec(x + y)*tan(x + y))/(sec(x + y)*tan(x + y) - x)`.

shaalaa.com
सांतत्य तथा अवकलनीयता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य और अवकलनीयता - प्रश्नावली [पृष्ठ १०९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 5 सांतत्य और अवकलनीयता
प्रश्नावली | Q 55 | पृष्ठ १०९

संबंधित प्रश्‍न

प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

(3x2 – 9x + 5)9


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

sin3 x + cos6 x


प्रदत्त फलन का x के सापेक्ष अवकलन कीजिए-

(log x)log x, x > 1


यदि `y = 12 (1 – cost), x = 10(t – sint), - pi/2 < t < pi/2` है तो `dy/dx` ज्ञात कीजिए।


f(x) = `1/(x - 1)` दिया है। संयोजित फलन y = f [f(x)] में असंतत के बिंदु ज्ञात कीजिए।


यदि f(x) = |cos x – sinx| है, तो `"f'"(pi/6)` ज्ञात कीजिए।


मान लीजिए कि f(x)= |cosx| है।जब,


 निम्नलिखित का सुमेलन कीजिए-

स्तंभ-I स्तंभ-II
(A) यदि फलन
f(x) = `{((sin3x)/x, "यदि फलन"  x = 0),("k"/2",",  "यदि फलन"  x = 0):}`
x = 0 पर संतत है, तो k बराबर है
(a) |x|
(B) प्रत्येक संतत फलन अवकलनीय होता हैं (b) सत्य
(C) एक फलन का उदाहरण, जो प्रत्येक स्थान पर॑ संतत है, परंतु ठीक एक स्थान पर अवकलनीय नहीं है (c) 6
(D) तत्समक फलन, अर्थात, f (x) = x ∀ ∈x R
एक संतत फलन है
(d) असत्य

 x = a पर  f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "यदि"  x ≠ 0),(0",",  "यदि"  x = "a"):}` 


x = 1 पर f(x) = `{{:(x^2/2",",  "यदि"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "यदि"  1 < x ≤ 2):}` 


x = 2 पर f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "यदि"  x ≠ 2),("k"",",  "यदि"  x = 2):}`  


`sin sqrt(x) + cos^2 sqrt(x)`


`cos(tan sqrt(x + 1))`


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`


x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`


यदि x = ecos2t और y = esin2t तो सिद्ध कीजिए कि `"dy"/"dx" = (-y log x)/(xlogy)` है।


`sin xy + x/y` = x2 – y


tan–1(x2 + y2) = a


यदि ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, तो दर्शाइए कि `"dy"/"dx" * "dx"/"dy"` = 1 


[0, 1] में f(x) = x(x – 1)2


वक्र y = (x – 3)2 पर एक ऐसा बिंदु ज्ञात कीजिए, जिस पर स्पर्श रेखा (3, 0) और (4, 1) बिंदुओं को मिलाने वाली जीवा के समांतर हो।


p और q के ऐसे मान ज्ञात कीजिए कि फलन f(x) = `{{:(x^2 + 3x + "p"",",  "यदि"  x ≤ 1),("q"x + 2",",  "यदि"  x > 1):}` बिंदु x = 1 पर अवकलनीय हो।


 यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `"dy"/"dx" = y/x`


 यदि xm . yn = (x + y)m+n है तो सिद्ध कीजिए कि `("d"^2"y")/("dx"^2)` = 0


बिंदुओं का वह समुच्चय, जहाँ f(x) = |2x − 1| sinx| से दिये जाना वाला फलन f अवकलनीय है, निम्नलिखित है।


 यदि y = `sqrt(sinx + y)` है, तो `"dy"/"dx"` बराबर है।


यदि f अपने प्राँत D पर संतत है, तो |f| भी D पर संतत होगा।


त्रिकोणमितीय एवं त्रिकोणमितीय व्युत्क्रम फलन अपने-अपने प्राँतों में अवकलनीय होते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×